![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odujoin | Structured version Visualization version GIF version |
Description: Joins in a dual order are meets in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
odujoin.m | ⊢ ∧ = (meet‘𝑂) |
Ref | Expression |
---|---|
odujoin | ⊢ ∧ = (join‘𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odujoin.m | . 2 ⊢ ∧ = (meet‘𝑂) | |
2 | oduglb.d | . . . . . . 7 ⊢ 𝐷 = (ODual‘𝑂) | |
3 | eqid 2735 | . . . . . . 7 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
4 | 2, 3 | odulub 18465 | . . . . . 6 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
5 | 4 | breqd 5159 | . . . . 5 ⊢ (𝑂 ∈ V → ({𝑎, 𝑏} (glb‘𝑂)𝑐 ↔ {𝑎, 𝑏} (lub‘𝐷)𝑐)) |
6 | 5 | oprabbidv 7499 | . . . 4 ⊢ (𝑂 ∈ V → {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝑂)𝑐} = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
7 | eqid 2735 | . . . . 5 ⊢ (meet‘𝑂) = (meet‘𝑂) | |
8 | 3, 7 | meetfval 18445 | . . . 4 ⊢ (𝑂 ∈ V → (meet‘𝑂) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝑂)𝑐}) |
9 | 2 | fvexi 6921 | . . . . 5 ⊢ 𝐷 ∈ V |
10 | eqid 2735 | . . . . . 6 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
11 | eqid 2735 | . . . . . 6 ⊢ (join‘𝐷) = (join‘𝐷) | |
12 | 10, 11 | joinfval 18431 | . . . . 5 ⊢ (𝐷 ∈ V → (join‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
13 | 9, 12 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ V → (join‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
14 | 6, 8, 13 | 3eqtr4d 2785 | . . 3 ⊢ (𝑂 ∈ V → (meet‘𝑂) = (join‘𝐷)) |
15 | fvprc 6899 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (meet‘𝑂) = ∅) | |
16 | fvprc 6899 | . . . . . . 7 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
17 | 2, 16 | eqtrid 2787 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
18 | 17 | fveq2d 6911 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (join‘𝐷) = (join‘∅)) |
19 | join0 18463 | . . . . 5 ⊢ (join‘∅) = ∅ | |
20 | 18, 19 | eqtrdi 2791 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (join‘𝐷) = ∅) |
21 | 15, 20 | eqtr4d 2778 | . . 3 ⊢ (¬ 𝑂 ∈ V → (meet‘𝑂) = (join‘𝐷)) |
22 | 14, 21 | pm2.61i 182 | . 2 ⊢ (meet‘𝑂) = (join‘𝐷) |
23 | 1, 22 | eqtri 2763 | 1 ⊢ ∧ = (join‘𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 {cpr 4633 class class class wbr 5148 ‘cfv 6563 {coprab 7432 ODualcodu 18343 lubclub 18367 glbcglb 18368 joincjn 18369 meetcmee 18370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-dec 12732 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ple 17318 df-odu 18344 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 |
This theorem is referenced by: odulatb 18492 latmass 18553 latdisd 18555 odudlatb 18583 dlatjmdi 18584 |
Copyright terms: Public domain | W3C validator |