Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odujoin | Structured version Visualization version GIF version |
Description: Joins in a dual order are meets in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
odujoin.m | ⊢ ∧ = (meet‘𝑂) |
Ref | Expression |
---|---|
odujoin | ⊢ ∧ = (join‘𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odujoin.m | . 2 ⊢ ∧ = (meet‘𝑂) | |
2 | oduglb.d | . . . . . . 7 ⊢ 𝐷 = (ODual‘𝑂) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
4 | 2, 3 | odulub 18040 | . . . . . 6 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
5 | 4 | breqd 5081 | . . . . 5 ⊢ (𝑂 ∈ V → ({𝑎, 𝑏} (glb‘𝑂)𝑐 ↔ {𝑎, 𝑏} (lub‘𝐷)𝑐)) |
6 | 5 | oprabbidv 7319 | . . . 4 ⊢ (𝑂 ∈ V → {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝑂)𝑐} = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
7 | eqid 2738 | . . . . 5 ⊢ (meet‘𝑂) = (meet‘𝑂) | |
8 | 3, 7 | meetfval 18020 | . . . 4 ⊢ (𝑂 ∈ V → (meet‘𝑂) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝑂)𝑐}) |
9 | 2 | fvexi 6770 | . . . . 5 ⊢ 𝐷 ∈ V |
10 | eqid 2738 | . . . . . 6 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
11 | eqid 2738 | . . . . . 6 ⊢ (join‘𝐷) = (join‘𝐷) | |
12 | 10, 11 | joinfval 18006 | . . . . 5 ⊢ (𝐷 ∈ V → (join‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
13 | 9, 12 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ V → (join‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
14 | 6, 8, 13 | 3eqtr4d 2788 | . . 3 ⊢ (𝑂 ∈ V → (meet‘𝑂) = (join‘𝐷)) |
15 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (meet‘𝑂) = ∅) | |
16 | fvprc 6748 | . . . . . . 7 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
17 | 2, 16 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
18 | 17 | fveq2d 6760 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (join‘𝐷) = (join‘∅)) |
19 | join0 18038 | . . . . 5 ⊢ (join‘∅) = ∅ | |
20 | 18, 19 | eqtrdi 2795 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (join‘𝐷) = ∅) |
21 | 15, 20 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑂 ∈ V → (meet‘𝑂) = (join‘𝐷)) |
22 | 14, 21 | pm2.61i 182 | . 2 ⊢ (meet‘𝑂) = (join‘𝐷) |
23 | 1, 22 | eqtri 2766 | 1 ⊢ ∧ = (join‘𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {cpr 4560 class class class wbr 5070 ‘cfv 6418 {coprab 7256 ODualcodu 17920 lubclub 17942 glbcglb 17943 joincjn 17944 meetcmee 17945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 |
This theorem is referenced by: odulatb 18067 latmass 18128 latdisd 18130 odudlatb 18158 dlatjmdi 18159 |
Copyright terms: Public domain | W3C validator |