Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odujoin | Structured version Visualization version GIF version |
Description: Joins in a dual order are meets in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
odujoin.m | ⊢ ∧ = (meet‘𝑂) |
Ref | Expression |
---|---|
odujoin | ⊢ ∧ = (join‘𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odujoin.m | . 2 ⊢ ∧ = (meet‘𝑂) | |
2 | oduglb.d | . . . . . . 7 ⊢ 𝐷 = (ODual‘𝑂) | |
3 | eqid 2737 | . . . . . . 7 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
4 | 2, 3 | odulub 18192 | . . . . . 6 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
5 | 4 | breqd 5096 | . . . . 5 ⊢ (𝑂 ∈ V → ({𝑎, 𝑏} (glb‘𝑂)𝑐 ↔ {𝑎, 𝑏} (lub‘𝐷)𝑐)) |
6 | 5 | oprabbidv 7379 | . . . 4 ⊢ (𝑂 ∈ V → {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝑂)𝑐} = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
7 | eqid 2737 | . . . . 5 ⊢ (meet‘𝑂) = (meet‘𝑂) | |
8 | 3, 7 | meetfval 18172 | . . . 4 ⊢ (𝑂 ∈ V → (meet‘𝑂) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝑂)𝑐}) |
9 | 2 | fvexi 6823 | . . . . 5 ⊢ 𝐷 ∈ V |
10 | eqid 2737 | . . . . . 6 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
11 | eqid 2737 | . . . . . 6 ⊢ (join‘𝐷) = (join‘𝐷) | |
12 | 10, 11 | joinfval 18158 | . . . . 5 ⊢ (𝐷 ∈ V → (join‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
13 | 9, 12 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ V → (join‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝐷)𝑐}) |
14 | 6, 8, 13 | 3eqtr4d 2787 | . . 3 ⊢ (𝑂 ∈ V → (meet‘𝑂) = (join‘𝐷)) |
15 | fvprc 6801 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (meet‘𝑂) = ∅) | |
16 | fvprc 6801 | . . . . . . 7 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
17 | 2, 16 | eqtrid 2789 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
18 | 17 | fveq2d 6813 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (join‘𝐷) = (join‘∅)) |
19 | join0 18190 | . . . . 5 ⊢ (join‘∅) = ∅ | |
20 | 18, 19 | eqtrdi 2793 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (join‘𝐷) = ∅) |
21 | 15, 20 | eqtr4d 2780 | . . 3 ⊢ (¬ 𝑂 ∈ V → (meet‘𝑂) = (join‘𝐷)) |
22 | 14, 21 | pm2.61i 182 | . 2 ⊢ (meet‘𝑂) = (join‘𝐷) |
23 | 1, 22 | eqtri 2765 | 1 ⊢ ∧ = (join‘𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4266 {cpr 4571 class class class wbr 5085 ‘cfv 6463 {coprab 7314 ODualcodu 18071 lubclub 18094 glbcglb 18095 joincjn 18096 meetcmee 18097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-dec 12508 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ple 17049 df-odu 18072 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 |
This theorem is referenced by: odulatb 18219 latmass 18280 latdisd 18282 odudlatb 18310 dlatjmdi 18311 |
Copyright terms: Public domain | W3C validator |