Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unccur Structured version   Visualization version   GIF version

Theorem unccur 37642
Description: Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.)
Assertion
Ref Expression
unccur ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → uncurry curry 𝐹 = 𝐹)

Proof of Theorem unccur
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6651 . . . . . . . . 9 (𝐹:(𝐴 × 𝐵)⟶𝐶𝐹 Fn (𝐴 × 𝐵))
21anim1i 615 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅})) → (𝐹 Fn (𝐴 × 𝐵) ∧ 𝐵 ∈ (𝑉 ∖ {∅})))
323adant3 1132 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (𝐹 Fn (𝐴 × 𝐵) ∧ 𝐵 ∈ (𝑉 ∖ {∅})))
4 3anass 1094 . . . . . . . . . . 11 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝑥𝐴𝑦𝐵) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ (𝑥𝐴𝑦𝐵)))
5 curfv 37639 . . . . . . . . . . 11 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝑥𝐴𝑦𝐵) ∧ 𝐵 ∈ (𝑉 ∖ {∅})) → ((curry 𝐹𝑥)‘𝑦) = (𝑥𝐹𝑦))
64, 5sylanbr 582 . . . . . . . . . 10 (((𝐹 Fn (𝐴 × 𝐵) ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝐵 ∈ (𝑉 ∖ {∅})) → ((curry 𝐹𝑥)‘𝑦) = (𝑥𝐹𝑦))
76an32s 652 . . . . . . . . 9 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐵 ∈ (𝑉 ∖ {∅})) ∧ (𝑥𝐴𝑦𝐵)) → ((curry 𝐹𝑥)‘𝑦) = (𝑥𝐹𝑦))
87eqeq1d 2733 . . . . . . . 8 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐵 ∈ (𝑉 ∖ {∅})) ∧ (𝑥𝐴𝑦𝐵)) → (((curry 𝐹𝑥)‘𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝑧))
9 eqcom 2738 . . . . . . . 8 ((𝑥𝐹𝑦) = 𝑧𝑧 = (𝑥𝐹𝑦))
108, 9bitrdi 287 . . . . . . 7 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐵 ∈ (𝑉 ∖ {∅})) ∧ (𝑥𝐴𝑦𝐵)) → (((curry 𝐹𝑥)‘𝑦) = 𝑧𝑧 = (𝑥𝐹𝑦)))
113, 10sylan 580 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ (𝑥𝐴𝑦𝐵)) → (((curry 𝐹𝑥)‘𝑦) = 𝑧𝑧 = (𝑥𝐹𝑦)))
12 curf 37637 . . . . . . . . . 10 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))
1312ffvelcdmda 7017 . . . . . . . . 9 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (curry 𝐹𝑥) ∈ (𝐶m 𝐵))
14 elmapfn 8789 . . . . . . . . 9 ((curry 𝐹𝑥) ∈ (𝐶m 𝐵) → (curry 𝐹𝑥) Fn 𝐵)
1513, 14syl 17 . . . . . . . 8 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (curry 𝐹𝑥) Fn 𝐵)
16 fnbrfvb 6872 . . . . . . . 8 (((curry 𝐹𝑥) Fn 𝐵𝑦𝐵) → (((curry 𝐹𝑥)‘𝑦) = 𝑧𝑦(curry 𝐹𝑥)𝑧))
1715, 16sylan 580 . . . . . . 7 ((((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (((curry 𝐹𝑥)‘𝑦) = 𝑧𝑦(curry 𝐹𝑥)𝑧))
1817anasss 466 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ (𝑥𝐴𝑦𝐵)) → (((curry 𝐹𝑥)‘𝑦) = 𝑧𝑦(curry 𝐹𝑥)𝑧))
19 ibar 528 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑧 = (𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))))
2019adantl 481 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))))
2111, 18, 203bitr3d 309 . . . . 5 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ (𝑥𝐴𝑦𝐵)) → (𝑦(curry 𝐹𝑥)𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))))
22 df-br 5092 . . . . . . . . . . 11 (𝑦(curry 𝐹𝑥)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (curry 𝐹𝑥))
23 elfvdm 6856 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ (curry 𝐹𝑥) → 𝑥 ∈ dom curry 𝐹)
2422, 23sylbi 217 . . . . . . . . . 10 (𝑦(curry 𝐹𝑥)𝑧𝑥 ∈ dom curry 𝐹)
25 fdm 6660 . . . . . . . . . . . 12 (curry 𝐹:𝐴⟶(𝐶m 𝐵) → dom curry 𝐹 = 𝐴)
2625eleq2d 2817 . . . . . . . . . . 11 (curry 𝐹:𝐴⟶(𝐶m 𝐵) → (𝑥 ∈ dom curry 𝐹𝑥𝐴))
2726biimpa 476 . . . . . . . . . 10 ((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥 ∈ dom curry 𝐹) → 𝑥𝐴)
2824, 27sylan2 593 . . . . . . . . 9 ((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑦(curry 𝐹𝑥)𝑧) → 𝑥𝐴)
29 ffvelcdm 7014 . . . . . . . . . . . . 13 ((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (curry 𝐹𝑥) ∈ (𝐶m 𝐵))
30 elmapi 8773 . . . . . . . . . . . . 13 ((curry 𝐹𝑥) ∈ (𝐶m 𝐵) → (curry 𝐹𝑥):𝐵𝐶)
31 fdm 6660 . . . . . . . . . . . . 13 ((curry 𝐹𝑥):𝐵𝐶 → dom (curry 𝐹𝑥) = 𝐵)
3229, 30, 313syl 18 . . . . . . . . . . . 12 ((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → dom (curry 𝐹𝑥) = 𝐵)
33 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
34 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
3533, 34breldm 5848 . . . . . . . . . . . 12 (𝑦(curry 𝐹𝑥)𝑧𝑦 ∈ dom (curry 𝐹𝑥))
36 eleq2 2820 . . . . . . . . . . . . 13 (dom (curry 𝐹𝑥) = 𝐵 → (𝑦 ∈ dom (curry 𝐹𝑥) ↔ 𝑦𝐵))
3736biimpa 476 . . . . . . . . . . . 12 ((dom (curry 𝐹𝑥) = 𝐵𝑦 ∈ dom (curry 𝐹𝑥)) → 𝑦𝐵)
3832, 35, 37syl2an 596 . . . . . . . . . . 11 (((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) ∧ 𝑦(curry 𝐹𝑥)𝑧) → 𝑦𝐵)
3938an32s 652 . . . . . . . . . 10 (((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑦(curry 𝐹𝑥)𝑧) ∧ 𝑥𝐴) → 𝑦𝐵)
4028, 39mpdan 687 . . . . . . . . 9 ((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑦(curry 𝐹𝑥)𝑧) → 𝑦𝐵)
4128, 40jca 511 . . . . . . . 8 ((curry 𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑦(curry 𝐹𝑥)𝑧) → (𝑥𝐴𝑦𝐵))
4212, 41sylan 580 . . . . . . 7 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑦(curry 𝐹𝑥)𝑧) → (𝑥𝐴𝑦𝐵))
4342stoic1a 1773 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ ¬ (𝑥𝐴𝑦𝐵)) → ¬ 𝑦(curry 𝐹𝑥)𝑧)
44 simpl 482 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦)) → (𝑥𝐴𝑦𝐵))
4544con3i 154 . . . . . . 7 (¬ (𝑥𝐴𝑦𝐵) → ¬ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦)))
4645adantl 481 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ ¬ (𝑥𝐴𝑦𝐵)) → ¬ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦)))
4743, 462falsed 376 . . . . 5 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ ¬ (𝑥𝐴𝑦𝐵)) → (𝑦(curry 𝐹𝑥)𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))))
4821, 47pm2.61dan 812 . . . 4 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (𝑦(curry 𝐹𝑥)𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))))
4948oprabbidv 7412 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(curry 𝐹𝑥)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))})
50 df-unc 8198 . . 3 uncurry curry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(curry 𝐹𝑥)𝑧}
51 df-mpo 7351 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝑥𝐹𝑦))}
5249, 50, 513eqtr4g 2791 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → uncurry curry 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
53 fnov 7477 . . . 4 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
541, 53sylib 218 . . 3 (𝐹:(𝐴 × 𝐵)⟶𝐶𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
55543ad2ant1 1133 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
5652, 55eqtr4d 2769 1 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → uncurry curry 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cdif 3899  c0 4283  {csn 4576  cop 4582   class class class wbr 5091   × cxp 5614  dom cdm 5616   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  {coprab 7347  cmpo 7348  curry ccur 8195  uncurry cunc 8196  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cur 8197  df-unc 8198  df-map 8752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator