Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opth1neg Structured version   Visualization version   GIF version

Theorem opth1neg 48673
Description: Two ordered pairs are not equal if their first components are not equal. (Contributed by Zhi Wang, 7-Oct-2025.)
Assertion
Ref Expression
opth1neg ((𝐴𝑉𝐵𝑊) → (𝐴𝐶 → ⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩))

Proof of Theorem opth1neg
StepHypRef Expression
1 orc 867 . 2 (𝐴𝐶 → (𝐴𝐶𝐵𝐷))
2 opthneg 5466 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
31, 2imbitrrid 246 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐶 → ⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2107  wne 2931  cop 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613
This theorem is referenced by:  fucofvalne  48972
  Copyright terms: Public domain W3C validator