Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opthneg | Structured version Visualization version GIF version |
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
Ref | Expression |
---|---|
opthneg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ ¬ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
2 | opthg 5386 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
3 | 2 | notbid 317 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
4 | ianor 978 | . . . 4 ⊢ (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷)) | |
5 | df-ne 2943 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
6 | df-ne 2943 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 ↔ ¬ 𝐵 = 𝐷) | |
7 | 5, 6 | orbi12i 911 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷)) |
8 | 4, 7 | bitr4i 277 | . . 3 ⊢ (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
9 | 3, 8 | bitrdi 286 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
10 | 1, 9 | syl5bb 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: opthne 5391 addsqnreup 26496 linds2eq 31477 addsval 34053 zlmodzxznm 45726 |
Copyright terms: Public domain | W3C validator |