MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthneg Structured version   Visualization version   GIF version

Theorem opthneg 5390
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
Assertion
Ref Expression
opthneg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))

Proof of Theorem opthneg
StepHypRef Expression
1 df-ne 2943 . 2 (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ ¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
2 opthg 5386 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
32notbid 317 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ ¬ (𝐴 = 𝐶𝐵 = 𝐷)))
4 ianor 978 . . . 4 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
5 df-ne 2943 . . . . 5 (𝐴𝐶 ↔ ¬ 𝐴 = 𝐶)
6 df-ne 2943 . . . . 5 (𝐵𝐷 ↔ ¬ 𝐵 = 𝐷)
75, 6orbi12i 911 . . . 4 ((𝐴𝐶𝐵𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
84, 7bitr4i 277 . . 3 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐴𝐶𝐵𝐷))
93, 8bitrdi 286 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
101, 9syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  opthne  5391  addsqnreup  26496  linds2eq  31477  addsval  34053  zlmodzxznm  45726
  Copyright terms: Public domain W3C validator