MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthneg Structured version   Visualization version   GIF version

Theorem opthneg 5419
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.)
Assertion
Ref Expression
opthneg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))

Proof of Theorem opthneg
StepHypRef Expression
1 df-ne 2929 . 2 (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ ¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
2 opthg 5415 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
32notbid 318 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ ¬ (𝐴 = 𝐶𝐵 = 𝐷)))
4 ianor 983 . . . 4 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
5 df-ne 2929 . . . . 5 (𝐴𝐶 ↔ ¬ 𝐴 = 𝐶)
6 df-ne 2929 . . . . 5 (𝐵𝐷 ↔ ¬ 𝐵 = 𝐷)
75, 6orbi12i 914 . . . 4 ((𝐴𝐶𝐵𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
84, 7bitr4i 278 . . 3 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐴𝐶𝐵𝐷))
93, 8bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
101, 9bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cop 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580
This theorem is referenced by:  opthne  5420  addsqnreup  27381  addsval  27905  mulsval  28048  linds2eq  33346  gpgusgralem  48166  gpg5nbgrvtx03starlem1  48178  gpg5nbgrvtx03starlem3  48180  gpg5nbgrvtx13starlem1  48181  gpg5nbgrvtx13starlem3  48183  zlmodzxznm  48608  opth1neg  48936  opth2neg  48937
  Copyright terms: Public domain W3C validator