![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opthneg | Structured version Visualization version GIF version |
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
Ref | Expression |
---|---|
opthneg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ ¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) | |
2 | opthg 5476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
3 | 2 | notbid 317 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
4 | ianor 978 | . . . 4 ⊢ (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷)) | |
5 | df-ne 2939 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
6 | df-ne 2939 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 ↔ ¬ 𝐵 = 𝐷) | |
7 | 5, 6 | orbi12i 911 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷)) |
8 | 4, 7 | bitr4i 277 | . . 3 ⊢ (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
9 | 3, 8 | bitrdi 286 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
10 | 1, 9 | bitrid 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ⟨cop 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 |
This theorem is referenced by: opthne 5481 addsqnreup 27182 addsval 27684 mulsval 27804 linds2eq 32771 zlmodzxznm 47265 |
Copyright terms: Public domain | W3C validator |