| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthneg | Structured version Visualization version GIF version | ||
| Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| Ref | Expression |
|---|---|
| opthneg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2928 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ ¬ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 2 | opthg 5445 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 3 | 2 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 4 | ianor 983 | . . . 4 ⊢ (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷)) | |
| 5 | df-ne 2928 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
| 6 | df-ne 2928 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 ↔ ¬ 𝐵 = 𝐷) | |
| 7 | 5, 6 | orbi12i 914 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷)) |
| 8 | 4, 7 | bitr4i 278 | . . 3 ⊢ (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) |
| 9 | 3, 8 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
| 10 | 1, 9 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 〈cop 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 |
| This theorem is referenced by: opthne 5450 addsqnreup 27361 addsval 27876 mulsval 28019 linds2eq 33360 gpgusgralem 48002 gpg5nbgrvtx03starlem1 48012 gpg5nbgrvtx03starlem3 48014 gpg5nbgrvtx13starlem1 48015 gpg5nbgrvtx13starlem3 48017 zlmodzxznm 48415 opth1neg 48746 opth2neg 48747 |
| Copyright terms: Public domain | W3C validator |