| Metamath
Proof Explorer Theorem List (p. 488 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | csph 48701 | Declare the syntax for spheres in generalized real Euclidean spaces. |
| class Sphere | ||
| Definition | df-line 48702* | Definition of lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.) |
| ⊢ LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠 ‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠 ‘𝑤)𝑦))})) | ||
| Definition | df-sph 48703* | Definition of spheres for given centers and radii in a metric space (or more generally, in a distance space, see distspace 24220, or even in any extended structure having a base set and a distance function into the real numbers. (Contributed by AV, 14-Jan-2023.) |
| ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) | ||
| Theorem | lines 48704* | The lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (LineM‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ (𝑊 ∈ 𝑉 → 𝐿 = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) | ||
| Theorem | line 48705* | The line passing through the two different points 𝑋 and 𝑌 in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (LineM‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) | ||
| Theorem | rrxlines 48706* | Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
| ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ · = ( ·𝑠 ‘𝐸) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) | ||
| Theorem | rrxline 48707* | The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
| ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ · = ( ·𝑠 ‘𝐸) & ⊢ + = (+g‘𝐸) ⇒ ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) | ||
| Theorem | rrxlinesc 48708* | Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.) |
| ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) | ||
| Theorem | rrxlinec 48709* | The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 48708. (Contributed by AV, 13-Feb-2023.) |
| ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) | ||
| Theorem | eenglngeehlnmlem1 48710* | Lemma 1 for eenglngeehlnm 48712. (Contributed by AV, 15-Feb-2023.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) | ||
| Theorem | eenglngeehlnmlem2 48711* | Lemma 2 for eenglngeehlnm 48712. (Contributed by AV, 15-Feb-2023.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) | ||
| Theorem | eenglngeehlnm 48712 | The line definition in the Tarski structure for the Euclidean geometry (see elntg 28947) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 48706). (Contributed by AV, 16-Feb-2023.) |
| ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil‘𝑁))) | ||
| Theorem | rrx2line 48713* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) | ||
| Theorem | rrx2vlinest 48714* | The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘1) = (𝑋‘1)}) | ||
| Theorem | rrx2linest 48715* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)}) | ||
| Theorem | rrx2linesl 48716* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) | ||
| Theorem | rrx2linest2 48717* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) | ||
| Theorem | elrrx2linest2 48718 | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶))) | ||
| Theorem | spheres 48719* | The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Sphere‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) | ||
| Theorem | sphere 48720* | A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Sphere‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) | ||
| Theorem | rrxsphere 48721* | The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.) |
| ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) & ⊢ 𝑆 = (Sphere‘𝐸) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) | ||
| Theorem | 2sphere 48722* | The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} ⇒ ⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶) | ||
| Theorem | 2sphere0 48723* | The sphere around the origin 0 (see rrx0 25313) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ⇒ ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) | ||
| Theorem | line2ylem 48724* | Lemma for line2y 48728. This proof is based on counterexamples for the following cases: 1. 𝐶 ≠ 0: p = (0,0) (LHS of biconditional is false, RHS is true); 2. 𝐶 = 0 ∧ 𝐵 ≠ 0: p = (1,-A/B) (LHS of biconditional is true, RHS is false); 3. 𝐴 = 𝐵 = 𝐶 = 0: p = (1,1) (LHS of biconditional is true, RHS is false). (Contributed by AV, 4-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑m 𝐼) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝 ∈ 𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0))) | ||
| Theorem | line2 48725* | Example for a line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, (𝐶 / 𝐵)〉} & ⊢ 𝑌 = {〈1, 1〉, 〈2, ((𝐶 − 𝐴) / 𝐵)〉} ⇒ ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐺 = (𝑋𝐿𝑌)) | ||
| Theorem | line2xlem 48726* | Lemma for line2x 48727. This proof is based on counterexamples for the following cases: 1. 𝑀 ≠ (𝐶 / 𝐵): p = (0,C/B) (LHS of biconditional is true, RHS is false); 2. 𝐴 ≠ 0 ∧ 𝑀 = (𝐶 / 𝐵): p = (1,C/B) (LHS of biconditional is false, RHS is true). (Contributed by AV, 4-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, 𝑀〉} & ⊢ 𝑌 = {〈1, 1〉, 〈2, 𝑀〉} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝 ∈ 𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)))) | ||
| Theorem | line2x 48727* | Example for a horizontal line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, 𝑀〉} & ⊢ 𝑌 = {〈1, 1〉, 〈2, 𝑀〉} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)))) | ||
| Theorem | line2y 48728* | Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, 𝑀〉} & ⊢ 𝑌 = {〈1, 0〉, 〈2, 𝑁〉} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0))) | ||
| Theorem | itsclc0lem1 48729 | Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.) |
| ⊢ (((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) + (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ) | ||
| Theorem | itsclc0lem2 48730 | Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 3-May-2023.) |
| ⊢ (((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) − (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ) | ||
| Theorem | itsclc0lem3 48731 | Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ) | ||
| Theorem | itscnhlc0yqe 48732 | Lemma for itsclc0 48744. Quadratic equation for the y-coordinate of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 6-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
| Theorem | itschlc0yqe 48733 | Lemma for itsclc0 48744. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
| Theorem | itsclc0yqe 48734 | Lemma for itsclc0 48744. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (𝐴 = 𝐵 = 0). (Contributed by AV, 25-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
| Theorem | itsclc0yqsollem1 48735 | Lemma 1 for itsclc0yqsol 48737. (Contributed by AV, 6-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷)) | ||
| Theorem | itsclc0yqsollem2 48736 | Lemma 2 for itsclc0yqsol 48737. (Contributed by AV, 6-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = ((2 · (abs‘𝐴)) · (√‘𝐷))) | ||
| Theorem | itsclc0yqsol 48737 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the y-coordinate of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 7-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | ||
| Theorem | itscnhlc0xyqsol 48738 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the coordinates of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 8-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
| Theorem | itschlc0xyqsol1 48739 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (𝐶 / 𝐵) ∧ (𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵))))) | ||
| Theorem | itschlc0xyqsol 48740 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 8-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
| Theorem | itsclc0xyqsol 48741 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 25-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
| Theorem | itsclc0xyqsolr 48742 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) → (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶))) | ||
| Theorem | itsclc0xyqsolb 48743 | Lemma for itsclc0 48744. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
| Theorem | itsclc0 48744* | The intersection points of a line 𝐿 and a circle around the origin. (Contributed by AV, 25-Feb-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ 𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
| Theorem | itsclc0b 48745* | The intersection points of a (nondegenerate) line through two points and a circle around the origin. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ 𝐿) ↔ (𝑋 ∈ 𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) | ||
| Theorem | itsclinecirc0 48746 | The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) & ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) & ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ⇒ ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
| Theorem | itsclinecirc0b 48747 | The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ 𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) | ||
| Theorem | itsclinecirc0in 48748 | The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{〈1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)〉}, {〈1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)〉}}) | ||
| Theorem | itsclquadb 48749* | Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 22-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
| Theorem | itsclquadeu 48750* | Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
| Theorem | 2itscplem1 48751 | Lemma 1 for 2itscp 48754. (Contributed by AV, 4-Mar-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) ⇒ ⊢ (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2)) | ||
| Theorem | 2itscplem2 48752 | Lemma 2 for 2itscp 48754. (Contributed by AV, 4-Mar-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) ⇒ ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) | ||
| Theorem | 2itscplem3 48753 | Lemma D for 2itscp 48754. (Contributed by AV, 4-Mar-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝑄 = ((𝐸↑2) + (𝐷↑2)) & ⊢ 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) | ||
| Theorem | 2itscp 48754 | A condition for a quadratic equation with real coefficients (for the intersection points of a line with a circle) to have (exactly) two different real solutions. (Contributed by AV, 5-Mar-2023.) (Revised by AV, 16-May-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2)) & ⊢ (𝜑 → (𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋)) & ⊢ 𝑄 = ((𝐸↑2) + (𝐷↑2)) & ⊢ 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (𝜑 → 0 < 𝑆) | ||
| Theorem | itscnhlinecirc02plem1 48755 | Lemma 1 for itscnhlinecirc02p 48758. (Contributed by AV, 6-Mar-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2)) & ⊢ (𝜑 → 𝐵 ≠ 𝑌) ⇒ ⊢ (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))) | ||
| Theorem | itscnhlinecirc02plem2 48756 | Lemma 2 for itscnhlinecirc02p 48758. (Contributed by AV, 10-Mar-2023.) |
| ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))) | ||
| Theorem | itscnhlinecirc02plem3 48757 | Lemma 3 for itscnhlinecirc02p 48758. (Contributed by AV, 10-Mar-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))))) | ||
| Theorem | itscnhlinecirc02p 48758* | Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) & ⊢ 𝑍 = {〈1, 𝑥〉, 〈2, 𝑦〉} ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦 ∈ 𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)))) | ||
| Theorem | inlinecirc02plem 48759* | Lemma for inlinecirc02p 48760. (Contributed by AV, 7-May-2023.) (Revised by AV, 15-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | ||
| Theorem | inlinecirc02p 48760 | Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper‘𝑃)) | ||
| Theorem | inlinecirc02preu 48761* | Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.) |
| ⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑m 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)))) | ||
| Theorem | pm4.71da 48762 | Deduction converting a biconditional to a biconditional with conjunction. Variant of pm4.71d 561. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) | ||
| Theorem | logic1 48763 | Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 ↔ 𝜏))) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
| Theorem | logic1a 48764 | Variant of logic1 48763. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝜓) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
| Theorem | logic2 48765 | Variant of logic1 48763. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
| Theorem | pm5.32dav 48766 | Distribution of implication over biconditional (deduction form). Variant of pm5.32da 579. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) | ||
| Theorem | pm5.32dra 48767 | Reverse distribution of implication over biconditional (deduction form). (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | ||
| Theorem | exp12bd 48768 | The import-export theorem (impexp 450) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜏 ∧ 𝜂) → 𝜁))) ⇒ ⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) ↔ (𝜏 → (𝜂 → 𝜁)))) | ||
| Theorem | mpbiran3d 48769 | Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
| Theorem | mpbiran4d 48770 | Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | ||
| Theorem | dtrucor3 48771* | An example of how ax-5 1910 without a distinct variable condition causes paradox in models of at least two objects. The hypothesis "dtrucor3.1" is provable from dtru 5383 in the ZF set theory. axc16nf 2264 and euae 2653 demonstrate that the violation of dtru 5383 leads to a model with only one object assuming its existence (ax-6 1967). The conclusion is also provable in the empty model ( see emptyal 1908). See also nf5 2282 and nf5i 2147 for the relation between unconditional ax-5 1910 and being not free. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 & ⊢ (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) ⇒ ⊢ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | ralbidb 48772* | Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc 48773 for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) | ||
| Theorem | ralbidc 48773* | Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb 48772. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) | ||
| Theorem | r19.41dv 48774* | A complex deduction form of r19.41v 3159. (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
| Theorem | rmotru 48775 | Two ways of expressing "at most one" element. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by BJ, 23-Sep-2024.) |
| ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 ∈ 𝐴 ⊤) | ||
| Theorem | reutru 48776 | Two ways of expressing "exactly one" element. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 ⊤) | ||
| Theorem | reutruALT 48777 | Alternate proof of reutru 48776. (Contributed by Zhi Wang, 23-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 ⊤) | ||
| Theorem | reueqbidva 48778* | Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv 3385. (Contributed by Zhi Wang, 20-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | reuxfr1dd 48779* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Simplifies reuxfr1d 3712. (Contributed by Zhi Wang, 20-Sep-2025.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ssdisjd 48780 | Subset preserves disjointness. Deduction form of ssdisj 4413. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝐵 ∩ 𝐶) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | ssdisjdr 48781 | Subset preserves disjointness. Deduction form of ssdisj 4413. Alternatively this could be proved with ineqcom 4163 in tandem with ssdisjd 48780. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) | ||
| Theorem | disjdifb 48782 | Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
| Theorem | predisj 48783 | Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) & ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | ||
| Theorem | vsn 48784 | The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ {V} = ∅ | ||
| Theorem | mosn 48785* | "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | mo0 48786* | "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | mosssn 48787* | "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | mo0sn 48788* | Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | ||
| Theorem | mosssn2 48789* | Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) | ||
| Theorem | unilbss 48790* | Superclass of the greatest lower bound. A dual statement of ssintub 4919. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 | ||
| Theorem | iuneq0 48791 | An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) | ||
| Theorem | iineq0 48792 | An indexed intersection is empty if one of the intersected classes is empty. (Contributed by Zhi Wang, 30-Oct-2025.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = ∅) | ||
| Theorem | iunlub 48793* | The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) | ||
| Theorem | iinglb 48794* | The indexed intersection is the the greatest lower bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐶) | ||
| Theorem | iuneqconst2 48795* | Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) | ||
| Theorem | iineqconst2 48796* | Indexed intersection of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐶) | ||
| Theorem | inpw 48797* | Two ways of expressing a collection of subsets as seen in df-ntr 22923, unimax 4897, and others (Contributed by Zhi Wang, 27-Sep-2024.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) | ||
| Theorem | opth1neg 48798 | Two ordered pairs are not equal if their first components are not equal. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐶 → 〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉)) | ||
| Theorem | opth2neg 48799 | Two ordered pairs are not equal if their second components are not equal. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ 𝐷 → 〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉)) | ||
| Theorem | brab2dd 48800* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |