Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opth2neg Structured version   Visualization version   GIF version

Theorem opth2neg 48690
Description: Two ordered pairs are not equal if their second components are not equal. (Contributed by Zhi Wang, 7-Oct-2025.)
Assertion
Ref Expression
opth2neg ((𝐴𝑉𝐵𝑊) → (𝐵𝐷 → ⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩))

Proof of Theorem opth2neg
StepHypRef Expression
1 olc 869 . 2 (𝐵𝐷 → (𝐴𝐶𝐵𝐷))
2 opthneg 5495 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩ ↔ (𝐴𝐶𝐵𝐷)))
31, 2imbitrrid 246 1 ((𝐴𝑉𝐵𝑊) → (𝐵𝐷 → ⟨𝐴, 𝐵⟩ ≠ ⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  wcel 2108  wne 2940  cop 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator