Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofvalne Structured version   Visualization version   GIF version

Theorem fucofvalne 49450
Description: Value of the function giving the functor composition bifunctor, if 𝐶 or 𝐷 are not sets. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
fucofvalne.c (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V))
fucofvalne.e (𝜑𝐸 ∈ Cat)
fucofvalne.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
fucofvalne.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucofvalne (𝜑 ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable groups:   𝐸,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝜑,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝐷(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝑊(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   (𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)

Proof of Theorem fucofvalne
Dummy variables 𝑔 𝑛 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5247 . . . 4 ∅ ∈ V
21a1i 11 . . 3 (𝜑 → ∅ ∈ V)
3 1st0 7933 . . . 4 (1st ‘∅) = ∅
43a1i 11 . . 3 (𝜑 → (1st ‘∅) = ∅)
5 2nd0 7934 . . . 4 (2nd ‘∅) = ∅
65a1i 11 . . 3 (𝜑 → (2nd ‘∅) = ∅)
7 fucofvalne.e . . 3 (𝜑𝐸 ∈ Cat)
8 fucofvalne.c . . . . . 6 (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V))
9 opprc 4847 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = ∅)
108, 9syl 17 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ = ∅)
1110oveq1d 7367 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (∅ ∘F 𝐸))
12 fucofvalne.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
1311, 12eqtr3d 2770 . . 3 (𝜑 → (∅ ∘F 𝐸) = )
14 eqidd 2734 . . 3 (𝜑 → ((∅ Func 𝐸) × (∅ Func ∅)) = ((∅ Func 𝐸) × (∅ Func ∅)))
152, 4, 6, 7, 13, 14fucofvalg 49443 . 2 (𝜑 = ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
16 opex 5407 . . . . . . . . . 10 ⟨∅, ∅⟩ ∈ V
1716snnz 4728 . . . . . . . . 9 {⟨∅, ∅⟩} ≠ ∅
1817neii 2931 . . . . . . . 8 ¬ {⟨∅, ∅⟩} = ∅
19 ioran 985 . . . . . . . . 9 (¬ ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅) ↔ (¬ {⟨∅, ∅⟩} = ∅ ∧ ¬ {⟨∅, ∅⟩} = ∅))
20 xpeq0 6112 . . . . . . . . . . 11 (({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅ ↔ ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅))
2120biimpi 216 . . . . . . . . . 10 (({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅ → ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅))
2221con3i 154 . . . . . . . . 9 (¬ ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅) → ¬ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅)
2319, 22sylbir 235 . . . . . . . 8 ((¬ {⟨∅, ∅⟩} = ∅ ∧ ¬ {⟨∅, ∅⟩} = ∅) → ¬ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅)
2418, 18, 23mp2an 692 . . . . . . 7 ¬ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅
2570func 49212 . . . . . . . . 9 (𝜑 → (∅ Func 𝐸) = {⟨∅, ∅⟩})
26 0cat 17597 . . . . . . . . . . 11 ∅ ∈ Cat
2726a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Cat)
28270func 49212 . . . . . . . . 9 (𝜑 → (∅ Func ∅) = {⟨∅, ∅⟩})
2925, 28xpeq12d 5650 . . . . . . . 8 (𝜑 → ((∅ Func 𝐸) × (∅ Func ∅)) = ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}))
30 df-func 17767 . . . . . . . . . . . 12 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
3130reldmmpo 7486 . . . . . . . . . . 11 Rel dom Func
32 0nelrel0 5679 . . . . . . . . . . 11 (Rel dom Func → ¬ ∅ ∈ dom Func )
3331, 32ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ dom Func
3410eleq1d 2818 . . . . . . . . . 10 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ dom Func ↔ ∅ ∈ dom Func ))
3533, 34mtbiri 327 . . . . . . . . 9 (𝜑 → ¬ ⟨𝐶, 𝐷⟩ ∈ dom Func )
36 df-ov 7355 . . . . . . . . . . . 12 (𝐶 Func 𝐷) = ( Func ‘⟨𝐶, 𝐷⟩)
37 ndmfv 6860 . . . . . . . . . . . 12 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → ( Func ‘⟨𝐶, 𝐷⟩) = ∅)
3836, 37eqtrid 2780 . . . . . . . . . . 11 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → (𝐶 Func 𝐷) = ∅)
3938xpeq2d 5649 . . . . . . . . . 10 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × ∅))
40 xp0 5719 . . . . . . . . . 10 ((𝐷 Func 𝐸) × ∅) = ∅
4139, 40eqtrdi 2784 . . . . . . . . 9 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ∅)
4235, 41syl 17 . . . . . . . 8 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ∅)
4329, 42eqeq12d 2749 . . . . . . 7 (𝜑 → (((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↔ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅))
4424, 43mtbiri 327 . . . . . 6 (𝜑 → ¬ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
45 rescofuf 49218 . . . . . . . . . 10 ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))):((∅ Func 𝐸) × (∅ Func ∅))⟶(∅ Func 𝐸)
4645fdmi 6667 . . . . . . . . 9 dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ((∅ Func 𝐸) × (∅ Func ∅))
47 rescofuf 49218 . . . . . . . . . 10 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
4847fdmi 6667 . . . . . . . . 9 dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
4946, 48eqeq12i 2751 . . . . . . . 8 (dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ↔ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
5049biimpi 216 . . . . . . 7 (dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
5150con3i 154 . . . . . 6 (¬ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ¬ dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
52 dmeq 5847 . . . . . . 7 (( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5352con3i 154 . . . . . 6 (¬ dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ¬ ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5444, 51, 533syl 18 . . . . 5 (𝜑 → ¬ ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5554neqned 2936 . . . 4 (𝜑 → ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
56 fucofvalne.w . . . . 5 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
5756reseq2d 5932 . . . 4 (𝜑 → ( ∘func𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5855, 57neeqtrrd 3003 . . 3 (𝜑 → ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func𝑊))
59 ovex 7385 . . . . . 6 (∅ Func 𝐸) ∈ V
60 ovex 7385 . . . . . 6 (∅ Func ∅) ∈ V
6159, 60xpex 7692 . . . . 5 ((∅ Func 𝐸) × (∅ Func ∅)) ∈ V
62 fex 7166 . . . . 5 ((( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))):((∅ Func 𝐸) × (∅ Func ∅))⟶(∅ Func 𝐸) ∧ ((∅ Func 𝐸) × (∅ Func ∅)) ∈ V) → ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V)
6345, 61, 62mp2an 692 . . . 4 ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V
6461, 61mpoex 8017 . . . 4 (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V
65 opth1neg 48950 . . . 4 ((( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V ∧ (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V) → (( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func𝑊) → ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩))
6663, 64, 65mp2an 692 . . 3 (( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func𝑊) → ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
6758, 66syl 17 . 2 (𝜑 → ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
6815, 67eqnetrd 2996 1 (𝜑 ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  [wsbc 3737  csb 3846  c0 4282  {csn 4575  cop 4581  {copab 5155  cmpt 5174   × cxp 5617  dom cdm 5619  cres 5621  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  m cmap 8756  Xcixp 8827  Basecbs 17122  Hom chom 17174  compcco 17175  Catccat 17572  Idccid 17573   Func cfunc 17763  func ccofu 17765   Nat cnat 17853  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-map 8758  df-ixp 8828  df-nn 12133  df-slot 17095  df-ndx 17107  df-base 17123  df-cat 17576  df-cid 17577  df-func 17767  df-cofu 17769  df-fuco 49442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator