Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofvalne Structured version   Visualization version   GIF version

Theorem fucofvalne 49356
Description: Value of the function giving the functor composition bifunctor, if 𝐶 or 𝐷 are not sets. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
fucofvalne.c (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V))
fucofvalne.e (𝜑𝐸 ∈ Cat)
fucofvalne.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
fucofvalne.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucofvalne (𝜑 ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Distinct variable groups:   𝐸,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥   𝜑,𝑎,𝑏,𝑓,𝑘,𝑙,𝑚,𝑟,𝑢,𝑣,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝐷(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   𝑊(𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)   (𝑥,𝑣,𝑢,𝑓,𝑘,𝑚,𝑟,𝑎,𝑏,𝑙)

Proof of Theorem fucofvalne
Dummy variables 𝑔 𝑛 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5245 . . . 4 ∅ ∈ V
21a1i 11 . . 3 (𝜑 → ∅ ∈ V)
3 1st0 7927 . . . 4 (1st ‘∅) = ∅
43a1i 11 . . 3 (𝜑 → (1st ‘∅) = ∅)
5 2nd0 7928 . . . 4 (2nd ‘∅) = ∅
65a1i 11 . . 3 (𝜑 → (2nd ‘∅) = ∅)
7 fucofvalne.e . . 3 (𝜑𝐸 ∈ Cat)
8 fucofvalne.c . . . . . 6 (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V))
9 opprc 4848 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = ∅)
108, 9syl 17 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ = ∅)
1110oveq1d 7361 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (∅ ∘F 𝐸))
12 fucofvalne.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
1311, 12eqtr3d 2768 . . 3 (𝜑 → (∅ ∘F 𝐸) = )
14 eqidd 2732 . . 3 (𝜑 → ((∅ Func 𝐸) × (∅ Func ∅)) = ((∅ Func 𝐸) × (∅ Func ∅)))
152, 4, 6, 7, 13, 14fucofvalg 49349 . 2 (𝜑 = ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
16 opex 5404 . . . . . . . . . 10 ⟨∅, ∅⟩ ∈ V
1716snnz 4729 . . . . . . . . 9 {⟨∅, ∅⟩} ≠ ∅
1817neii 2930 . . . . . . . 8 ¬ {⟨∅, ∅⟩} = ∅
19 ioran 985 . . . . . . . . 9 (¬ ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅) ↔ (¬ {⟨∅, ∅⟩} = ∅ ∧ ¬ {⟨∅, ∅⟩} = ∅))
20 xpeq0 6107 . . . . . . . . . . 11 (({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅ ↔ ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅))
2120biimpi 216 . . . . . . . . . 10 (({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅ → ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅))
2221con3i 154 . . . . . . . . 9 (¬ ({⟨∅, ∅⟩} = ∅ ∨ {⟨∅, ∅⟩} = ∅) → ¬ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅)
2319, 22sylbir 235 . . . . . . . 8 ((¬ {⟨∅, ∅⟩} = ∅ ∧ ¬ {⟨∅, ∅⟩} = ∅) → ¬ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅)
2418, 18, 23mp2an 692 . . . . . . 7 ¬ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅
2570func 49118 . . . . . . . . 9 (𝜑 → (∅ Func 𝐸) = {⟨∅, ∅⟩})
26 0cat 17592 . . . . . . . . . . 11 ∅ ∈ Cat
2726a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Cat)
28270func 49118 . . . . . . . . 9 (𝜑 → (∅ Func ∅) = {⟨∅, ∅⟩})
2925, 28xpeq12d 5647 . . . . . . . 8 (𝜑 → ((∅ Func 𝐸) × (∅ Func ∅)) = ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}))
30 df-func 17762 . . . . . . . . . . . 12 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
3130reldmmpo 7480 . . . . . . . . . . 11 Rel dom Func
32 0nelrel0 5676 . . . . . . . . . . 11 (Rel dom Func → ¬ ∅ ∈ dom Func )
3331, 32ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ dom Func
3410eleq1d 2816 . . . . . . . . . 10 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ dom Func ↔ ∅ ∈ dom Func ))
3533, 34mtbiri 327 . . . . . . . . 9 (𝜑 → ¬ ⟨𝐶, 𝐷⟩ ∈ dom Func )
36 df-ov 7349 . . . . . . . . . . . 12 (𝐶 Func 𝐷) = ( Func ‘⟨𝐶, 𝐷⟩)
37 ndmfv 6854 . . . . . . . . . . . 12 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → ( Func ‘⟨𝐶, 𝐷⟩) = ∅)
3836, 37eqtrid 2778 . . . . . . . . . . 11 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → (𝐶 Func 𝐷) = ∅)
3938xpeq2d 5646 . . . . . . . . . 10 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × ∅))
40 xp0 6105 . . . . . . . . . 10 ((𝐷 Func 𝐸) × ∅) = ∅
4139, 40eqtrdi 2782 . . . . . . . . 9 (¬ ⟨𝐶, 𝐷⟩ ∈ dom Func → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ∅)
4235, 41syl 17 . . . . . . . 8 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ∅)
4329, 42eqeq12d 2747 . . . . . . 7 (𝜑 → (((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↔ ({⟨∅, ∅⟩} × {⟨∅, ∅⟩}) = ∅))
4424, 43mtbiri 327 . . . . . 6 (𝜑 → ¬ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
45 rescofuf 49124 . . . . . . . . . 10 ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))):((∅ Func 𝐸) × (∅ Func ∅))⟶(∅ Func 𝐸)
4645fdmi 6662 . . . . . . . . 9 dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ((∅ Func 𝐸) × (∅ Func ∅))
47 rescofuf 49124 . . . . . . . . . 10 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
4847fdmi 6662 . . . . . . . . 9 dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
4946, 48eqeq12i 2749 . . . . . . . 8 (dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ↔ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
5049biimpi 216 . . . . . . 7 (dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
5150con3i 154 . . . . . 6 (¬ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ¬ dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
52 dmeq 5843 . . . . . . 7 (( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5352con3i 154 . . . . . 6 (¬ dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ¬ ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5444, 51, 533syl 18 . . . . 5 (𝜑 → ¬ ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5554neqned 2935 . . . 4 (𝜑 → ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
56 fucofvalne.w . . . . 5 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
5756reseq2d 5928 . . . 4 (𝜑 → ( ∘func𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
5855, 57neeqtrrd 3002 . . 3 (𝜑 → ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func𝑊))
59 ovex 7379 . . . . . 6 (∅ Func 𝐸) ∈ V
60 ovex 7379 . . . . . 6 (∅ Func ∅) ∈ V
6159, 60xpex 7686 . . . . 5 ((∅ Func 𝐸) × (∅ Func ∅)) ∈ V
62 fex 7160 . . . . 5 ((( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))):((∅ Func 𝐸) × (∅ Func ∅))⟶(∅ Func 𝐸) ∧ ((∅ Func 𝐸) × (∅ Func ∅)) ∈ V) → ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V)
6345, 61, 62mp2an 692 . . . 4 ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V
6461, 61mpoex 8011 . . . 4 (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V
65 opth1neg 48856 . . . 4 ((( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V ∧ (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V) → (( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func𝑊) → ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩))
6663, 64, 65mp2an 692 . . 3 (( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ ( ∘func𝑊) → ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
6758, 66syl 17 . 2 (𝜑 → ⟨( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func ∅)), 𝑣 ∈ ((∅ Func 𝐸) × (∅ Func ∅)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(∅ Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(∅ Nat ∅)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
6815, 67eqnetrd 2995 1 (𝜑 ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  [wsbc 3741  csb 3850  c0 4283  {csn 4576  cop 4582  {copab 5153  cmpt 5172   × cxp 5614  dom cdm 5616  cres 5618  Rel wrel 5621  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Idccid 17568   Func cfunc 17758  func ccofu 17760   Nat cnat 17848  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-ixp 8822  df-nn 12123  df-slot 17090  df-ndx 17102  df-base 17118  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-fuco 49348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator