| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0ex 5289 | 
. . . 4
⊢ ∅
∈ V | 
| 2 | 1 | a1i 11 | 
. . 3
⊢ (𝜑 → ∅ ∈
V) | 
| 3 |   | 1st0 8003 | 
. . . 4
⊢
(1st ‘∅) = ∅ | 
| 4 | 3 | a1i 11 | 
. . 3
⊢ (𝜑 → (1st
‘∅) = ∅) | 
| 5 |   | 2nd0 8004 | 
. . . 4
⊢
(2nd ‘∅) = ∅ | 
| 6 | 5 | a1i 11 | 
. . 3
⊢ (𝜑 → (2nd
‘∅) = ∅) | 
| 7 |   | fucofvalne.e | 
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) | 
| 8 |   | fucofvalne.c | 
. . . . . 6
⊢ (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | 
| 9 |   | opprc 4878 | 
. . . . . 6
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = ∅) | 
| 10 | 8, 9 | syl 17 | 
. . . . 5
⊢ (𝜑 → 〈𝐶, 𝐷〉 = ∅) | 
| 11 | 10 | oveq1d 7429 | 
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (∅
∘F 𝐸)) | 
| 12 |   | fucofvalne.o | 
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) | 
| 13 | 11, 12 | eqtr3d 2771 | 
. . 3
⊢ (𝜑 → (∅
∘F 𝐸) = ⚬ ) | 
| 14 |   | eqidd 2735 | 
. . 3
⊢ (𝜑 → ((∅ Func 𝐸) × (∅ Func
∅)) = ((∅ Func 𝐸) × (∅ Func
∅))) | 
| 15 | 2, 4, 6, 7, 13, 14 | fucofvalg 48973 | 
. 2
⊢ (𝜑 → ⚬ = 〈(
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func
∅)), 𝑣 ∈
((∅ Func 𝐸) ×
(∅ Func ∅)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(∅ Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(∅ Nat
∅)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | 
| 16 |   | opex 5451 | 
. . . . . . . . . 10
⊢
〈∅, ∅〉 ∈ V | 
| 17 | 16 | snnz 4758 | 
. . . . . . . . 9
⊢
{〈∅, ∅〉} ≠ ∅ | 
| 18 | 17 | neii 2933 | 
. . . . . . . 8
⊢  ¬
{〈∅, ∅〉} = ∅ | 
| 19 |   | ioran 985 | 
. . . . . . . . 9
⊢ (¬
({〈∅, ∅〉} = ∅ ∨ {〈∅, ∅〉} =
∅) ↔ (¬ {〈∅, ∅〉} = ∅ ∧ ¬
{〈∅, ∅〉} = ∅)) | 
| 20 |   | xpeq0 6162 | 
. . . . . . . . . . 11
⊢
(({〈∅, ∅〉} × {〈∅, ∅〉})
= ∅ ↔ ({〈∅, ∅〉} = ∅ ∨ {〈∅,
∅〉} = ∅)) | 
| 21 | 20 | biimpi 216 | 
. . . . . . . . . 10
⊢
(({〈∅, ∅〉} × {〈∅, ∅〉})
= ∅ → ({〈∅, ∅〉} = ∅ ∨ {〈∅,
∅〉} = ∅)) | 
| 22 | 21 | con3i 154 | 
. . . . . . . . 9
⊢ (¬
({〈∅, ∅〉} = ∅ ∨ {〈∅, ∅〉} =
∅) → ¬ ({〈∅, ∅〉} × {〈∅,
∅〉}) = ∅) | 
| 23 | 19, 22 | sylbir 235 | 
. . . . . . . 8
⊢ ((¬
{〈∅, ∅〉} = ∅ ∧ ¬ {〈∅,
∅〉} = ∅) → ¬ ({〈∅, ∅〉} ×
{〈∅, ∅〉}) = ∅) | 
| 24 | 18, 18, 23 | mp2an 692 | 
. . . . . . 7
⊢  ¬
({〈∅, ∅〉} × {〈∅, ∅〉}) =
∅ | 
| 25 | 7 | 0func 48873 | 
. . . . . . . . 9
⊢ (𝜑 → (∅ Func 𝐸) = {〈∅,
∅〉}) | 
| 26 |   | 0cat 17704 | 
. . . . . . . . . . 11
⊢ ∅
∈ Cat | 
| 27 | 26 | a1i 11 | 
. . . . . . . . . 10
⊢ (𝜑 → ∅ ∈
Cat) | 
| 28 | 27 | 0func 48873 | 
. . . . . . . . 9
⊢ (𝜑 → (∅ Func ∅) =
{〈∅, ∅〉}) | 
| 29 | 25, 28 | xpeq12d 5698 | 
. . . . . . . 8
⊢ (𝜑 → ((∅ Func 𝐸) × (∅ Func
∅)) = ({〈∅, ∅〉} × {〈∅,
∅〉})) | 
| 30 |   | df-func 17875 | 
. . . . . . . . . . . 12
⊢  Func =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | 
| 31 | 30 | reldmmpo 7550 | 
. . . . . . . . . . 11
⊢ Rel dom
Func | 
| 32 |   | 0nelrel0 5727 | 
. . . . . . . . . . 11
⊢ (Rel dom
Func → ¬ ∅ ∈ dom Func ) | 
| 33 | 31, 32 | ax-mp 5 | 
. . . . . . . . . 10
⊢  ¬
∅ ∈ dom Func | 
| 34 | 10 | eleq1d 2818 | 
. . . . . . . . . 10
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ dom Func ↔ ∅ ∈
dom Func )) | 
| 35 | 33, 34 | mtbiri 327 | 
. . . . . . . . 9
⊢ (𝜑 → ¬ 〈𝐶, 𝐷〉 ∈ dom Func ) | 
| 36 |   | df-ov 7417 | 
. . . . . . . . . . . 12
⊢ (𝐶 Func 𝐷) = ( Func ‘〈𝐶, 𝐷〉) | 
| 37 |   | ndmfv 6922 | 
. . . . . . . . . . . 12
⊢ (¬
〈𝐶, 𝐷〉 ∈ dom Func → ( Func
‘〈𝐶, 𝐷〉) =
∅) | 
| 38 | 36, 37 | eqtrid 2781 | 
. . . . . . . . . . 11
⊢ (¬
〈𝐶, 𝐷〉 ∈ dom Func → (𝐶 Func 𝐷) = ∅) | 
| 39 | 38 | xpeq2d 5697 | 
. . . . . . . . . 10
⊢ (¬
〈𝐶, 𝐷〉 ∈ dom Func → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × ∅)) | 
| 40 |   | xp0 6160 | 
. . . . . . . . . 10
⊢ ((𝐷 Func 𝐸) × ∅) =
∅ | 
| 41 | 39, 40 | eqtrdi 2785 | 
. . . . . . . . 9
⊢ (¬
〈𝐶, 𝐷〉 ∈ dom Func → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ∅) | 
| 42 | 35, 41 | syl 17 | 
. . . . . . . 8
⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ∅) | 
| 43 | 29, 42 | eqeq12d 2750 | 
. . . . . . 7
⊢ (𝜑 → (((∅ Func 𝐸) × (∅ Func
∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↔ ({〈∅, ∅〉}
× {〈∅, ∅〉}) = ∅)) | 
| 44 | 24, 43 | mtbiri 327 | 
. . . . . 6
⊢ (𝜑 → ¬ ((∅ Func 𝐸) × (∅ Func
∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | 
| 45 |   | rescofuf 48877 | 
. . . . . . . . . 10
⊢ (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))):((∅
Func 𝐸) × (∅
Func ∅))⟶(∅ Func 𝐸) | 
| 46 | 45 | fdmi 6728 | 
. . . . . . . . 9
⊢ dom (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) =
((∅ Func 𝐸) ×
(∅ Func ∅)) | 
| 47 |   | rescofuf 48877 | 
. . . . . . . . . 10
⊢ (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | 
| 48 | 47 | fdmi 6728 | 
. . . . . . . . 9
⊢ dom (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) | 
| 49 | 46, 48 | eqeq12i 2752 | 
. . . . . . . 8
⊢ (dom (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ↔ ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | 
| 50 | 49 | biimpi 216 | 
. . . . . . 7
⊢ (dom (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ((∅ Func 𝐸) × (∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | 
| 51 | 50 | con3i 154 | 
. . . . . 6
⊢ (¬
((∅ Func 𝐸) ×
(∅ Func ∅)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ¬ dom (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 52 |   | dmeq 5896 | 
. . . . . . 7
⊢ ((
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → dom (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 53 | 52 | con3i 154 | 
. . . . . 6
⊢ (¬
dom ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = dom (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) → ¬ (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 54 | 44, 51, 53 | 3syl 18 | 
. . . . 5
⊢ (𝜑 → ¬ (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) = (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 55 | 54 | neqned 2938 | 
. . . 4
⊢ (𝜑 → (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 56 |   | fucofvalne.w | 
. . . . 5
⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | 
| 57 | 56 | reseq2d 5979 | 
. . . 4
⊢ (𝜑 → (
∘func ↾ 𝑊) = ( ∘func ↾
((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 58 | 55, 57 | neeqtrrd 3005 | 
. . 3
⊢ (𝜑 → (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ (
∘func ↾ 𝑊)) | 
| 59 |   | ovex 7447 | 
. . . . . 6
⊢ (∅
Func 𝐸) ∈
V | 
| 60 |   | ovex 7447 | 
. . . . . 6
⊢ (∅
Func ∅) ∈ V | 
| 61 | 59, 60 | xpex 7756 | 
. . . . 5
⊢ ((∅
Func 𝐸) × (∅
Func ∅)) ∈ V | 
| 62 |   | fex 7229 | 
. . . . 5
⊢ (((
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))):((∅
Func 𝐸) × (∅
Func ∅))⟶(∅ Func 𝐸) ∧ ((∅ Func 𝐸) × (∅ Func ∅)) ∈ V)
→ ( ∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈
V) | 
| 63 | 45, 61, 62 | mp2an 692 | 
. . . 4
⊢ (
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈
V | 
| 64 | 61, 61 | mpoex 8087 | 
. . . 4
⊢ (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func
∅)), 𝑣 ∈
((∅ Func 𝐸) ×
(∅ Func ∅)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(∅ Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(∅ Nat
∅)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))) ∈ V | 
| 65 |   | opth1neg 48681 | 
. . . 4
⊢ (((
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ∈ V
∧ (𝑢 ∈ ((∅
Func 𝐸) × (∅
Func ∅)), 𝑣 ∈
((∅ Func 𝐸) ×
(∅ Func ∅)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(∅ Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(∅ Nat
∅)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))) ∈ V) → ((
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ (
∘func ↾ 𝑊) → 〈(
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func
∅)), 𝑣 ∈
((∅ Func 𝐸) ×
(∅ Func ∅)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(∅ Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(∅ Nat
∅)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ≠ 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉)) | 
| 66 | 63, 64, 65 | mp2an 692 | 
. . 3
⊢ ((
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))) ≠ (
∘func ↾ 𝑊) → 〈(
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func
∅)), 𝑣 ∈
((∅ Func 𝐸) ×
(∅ Func ∅)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(∅ Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(∅ Nat
∅)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ≠ 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | 
| 67 | 58, 66 | syl 17 | 
. 2
⊢ (𝜑 → 〈(
∘func ↾ ((∅ Func 𝐸) × (∅ Func ∅))), (𝑢 ∈ ((∅ Func 𝐸) × (∅ Func
∅)), 𝑣 ∈
((∅ Func 𝐸) ×
(∅ Func ∅)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(∅ Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(∅ Nat
∅)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘∅) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ≠ 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | 
| 68 | 15, 67 | eqnetrd 2998 | 
1
⊢ (𝜑 → ⚬ ≠ 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |