MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opwo0id Structured version   Visualization version   GIF version

Theorem opwo0id 5502
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
opwo0id 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})

Proof of Theorem opwo0id
StepHypRef Expression
1 0nelop 5501 . . . 4 ¬ ∅ ∈ ⟨𝑋, 𝑌
2 disjsn 4711 . . . 4 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩)
31, 2mpbir 231 . . 3 (⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅
4 disjdif2 4480 . . 3 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ → (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩)
53, 4ax-mp 5 . 2 (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌
65eqcomi 2746 1 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  cdif 3948  cin 3950  c0 4333  {csn 4626  cop 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633
This theorem is referenced by:  fundmge2nop0  14541
  Copyright terms: Public domain W3C validator