| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opwo0id | Structured version Visualization version GIF version | ||
| Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
| Ref | Expression |
|---|---|
| opwo0id | ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelop 5471 | . . . 4 ⊢ ¬ ∅ ∈ 〈𝑋, 𝑌〉 | |
| 2 | disjsn 4687 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | mpbir 231 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∩ {∅}) = ∅ |
| 4 | disjdif2 4455 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ → (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉 |
| 6 | 5 | eqcomi 2744 | 1 ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∩ cin 3925 ∅c0 4308 {csn 4601 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: fundmge2nop0 14520 |
| Copyright terms: Public domain | W3C validator |