![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opwo0id | Structured version Visualization version GIF version |
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
opwo0id | ⊢ ⟨𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelop 5496 | . . . 4 ⊢ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩ | |
2 | disjsn 4715 | . . . 4 ⊢ ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ |
4 | disjdif2 4479 | . . 3 ⊢ ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ → (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩ |
6 | 5 | eqcomi 2740 | 1 ⊢ ⟨𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ∩ cin 3947 ∅c0 4322 {csn 4628 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: fundmge2nop0 14460 |
Copyright terms: Public domain | W3C validator |