MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opwo0id Structured version   Visualization version   GIF version

Theorem opwo0id 5472
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
opwo0id 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})

Proof of Theorem opwo0id
StepHypRef Expression
1 0nelop 5471 . . . 4 ¬ ∅ ∈ ⟨𝑋, 𝑌
2 disjsn 4687 . . . 4 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩)
31, 2mpbir 231 . . 3 (⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅
4 disjdif2 4455 . . 3 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ → (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩)
53, 4ax-mp 5 . 2 (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌
65eqcomi 2744 1 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  cdif 3923  cin 3925  c0 4308  {csn 4601  cop 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608
This theorem is referenced by:  fundmge2nop0  14520
  Copyright terms: Public domain W3C validator