Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opwo0id | Structured version Visualization version GIF version |
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
opwo0id | ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelop 5410 | . . . 4 ⊢ ¬ ∅ ∈ 〈𝑋, 𝑌〉 | |
2 | disjsn 4647 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 〈𝑋, 𝑌〉) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∩ {∅}) = ∅ |
4 | disjdif2 4413 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ → (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉 |
6 | 5 | eqcomi 2747 | 1 ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ∅c0 4256 {csn 4561 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: fundmge2nop0 14206 |
Copyright terms: Public domain | W3C validator |