![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opwo0id | Structured version Visualization version GIF version |
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
opwo0id | ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelop 5515 | . . . 4 ⊢ ¬ ∅ ∈ 〈𝑋, 𝑌〉 | |
2 | disjsn 4736 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 〈𝑋, 𝑌〉) | |
3 | 1, 2 | mpbir 231 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∩ {∅}) = ∅ |
4 | disjdif2 4503 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ → (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉 |
6 | 5 | eqcomi 2749 | 1 ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 {csn 4648 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: fundmge2nop0 14551 |
Copyright terms: Public domain | W3C validator |