MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opwo0id Structured version   Visualization version   GIF version

Theorem opwo0id 5497
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
opwo0id 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})

Proof of Theorem opwo0id
StepHypRef Expression
1 0nelop 5496 . . . 4 ¬ ∅ ∈ ⟨𝑋, 𝑌
2 disjsn 4715 . . . 4 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩)
31, 2mpbir 230 . . 3 (⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅
4 disjdif2 4479 . . 3 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ → (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩)
53, 4ax-mp 5 . 2 (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌
65eqcomi 2740 1 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  cdif 3945  cin 3947  c0 4322  {csn 4628  cop 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635
This theorem is referenced by:  fundmge2nop0  14460
  Copyright terms: Public domain W3C validator