MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelop Structured version   Visualization version   GIF version

Theorem 0nelop 5149
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelop ¬ ∅ ∈ ⟨𝐴, 𝐵

Proof of Theorem 0nelop
StepHypRef Expression
1 id 22 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ ⟨𝐴, 𝐵⟩)
2 oprcl 4621 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 dfopg 4593 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
42, 3syl 17 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
51, 4eleqtrd 2887 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ {{𝐴}, {𝐴, 𝐵}})
6 elpri 4392 . . 3 (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
75, 6syl 17 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
82simpld 484 . . . . . 6 (∅ ∈ ⟨𝐴, 𝐵⟩ → 𝐴 ∈ V)
9 snnzg 4498 . . . . . 6 (𝐴 ∈ V → {𝐴} ≠ ∅)
108, 9syl 17 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴} ≠ ∅)
1110necomd 3033 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴})
12 prnzg 4501 . . . . . 6 (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅)
138, 12syl 17 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} ≠ ∅)
1413necomd 3033 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴, 𝐵})
1511, 14jca 503 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}))
16 neanior 3070 . . 3 ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
1715, 16sylib 209 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
187, 17pm2.65i 185 1 ¬ ∅ ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  wo 865   = wceq 1637  wcel 2156  wne 2978  Vcvv 3391  c0 4116  {csn 4370  {cpr 4372  cop 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-v 3393  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377
This theorem is referenced by:  opwo0id  5150  0nelelxp  5345
  Copyright terms: Public domain W3C validator