| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelop | Structured version Visualization version GIF version | ||
| Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0nelop | ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ 〈𝐴, 𝐵〉) | |
| 2 | oprcl 4848 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | dfopg 4820 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 5 | 1, 4 | eleqtrd 2833 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ {{𝐴}, {𝐴, 𝐵}}) |
| 6 | elpri 4597 | . . 3 ⊢ (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
| 8 | 2 | simpld 494 | . . . . . 6 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 𝐴 ∈ V) |
| 9 | 8 | snn0d 4725 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴} ≠ ∅) |
| 10 | 9 | necomd 2983 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴}) |
| 11 | prnzg 4728 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅) | |
| 12 | 8, 11 | syl 17 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴, 𝐵} ≠ ∅) |
| 13 | 12 | necomd 2983 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴, 𝐵}) |
| 14 | 10, 13 | jca 511 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵})) |
| 15 | neanior 3021 | . . 3 ⊢ ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
| 16 | 14, 15 | sylib 218 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
| 17 | 7, 16 | pm2.65i 194 | 1 ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 {csn 4573 {cpr 4575 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: opwo0id 5435 0nelelxp 5649 |
| Copyright terms: Public domain | W3C validator |