![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelop | Structured version Visualization version GIF version |
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0nelop | ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ 〈𝐴, 𝐵〉) | |
2 | oprcl 4923 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | dfopg 4895 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
5 | 1, 4 | eleqtrd 2846 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ {{𝐴}, {𝐴, 𝐵}}) |
6 | elpri 4671 | . . 3 ⊢ (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
8 | 2 | simpld 494 | . . . . . 6 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 𝐴 ∈ V) |
9 | 8 | snn0d 4800 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴} ≠ ∅) |
10 | 9 | necomd 3002 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴}) |
11 | prnzg 4803 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅) | |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴, 𝐵} ≠ ∅) |
13 | 12 | necomd 3002 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴, 𝐵}) |
14 | 10, 13 | jca 511 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵})) |
15 | neanior 3041 | . . 3 ⊢ ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
16 | 14, 15 | sylib 218 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
17 | 7, 16 | pm2.65i 194 | 1 ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {csn 4648 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: opwo0id 5516 0nelelxp 5735 |
Copyright terms: Public domain | W3C validator |