MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelop Structured version   Visualization version   GIF version

Theorem 0nelop 5489
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelop ¬ ∅ ∈ ⟨𝐴, 𝐵

Proof of Theorem 0nelop
StepHypRef Expression
1 id 22 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ ⟨𝐴, 𝐵⟩)
2 oprcl 4894 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 dfopg 4866 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
42, 3syl 17 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
51, 4eleqtrd 2829 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ {{𝐴}, {𝐴, 𝐵}})
6 elpri 4645 . . 3 (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
75, 6syl 17 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
82simpld 494 . . . . . 6 (∅ ∈ ⟨𝐴, 𝐵⟩ → 𝐴 ∈ V)
98snn0d 4774 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴} ≠ ∅)
109necomd 2990 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴})
11 prnzg 4777 . . . . . 6 (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅)
128, 11syl 17 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} ≠ ∅)
1312necomd 2990 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴, 𝐵})
1410, 13jca 511 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}))
15 neanior 3029 . . 3 ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
1614, 15sylib 217 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
177, 16pm2.65i 193 1 ¬ ∅ ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2934  Vcvv 3468  c0 4317  {csn 4623  {cpr 4625  cop 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630
This theorem is referenced by:  opwo0id  5490  0nelelxp  5704
  Copyright terms: Public domain W3C validator