MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelop Structured version   Visualization version   GIF version

Theorem 0nelop 5404
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelop ¬ ∅ ∈ ⟨𝐴, 𝐵

Proof of Theorem 0nelop
StepHypRef Expression
1 id 22 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ ⟨𝐴, 𝐵⟩)
2 oprcl 4827 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 dfopg 4799 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
42, 3syl 17 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
51, 4eleqtrd 2841 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ {{𝐴}, {𝐴, 𝐵}})
6 elpri 4580 . . 3 (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
75, 6syl 17 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
82simpld 494 . . . . . 6 (∅ ∈ ⟨𝐴, 𝐵⟩ → 𝐴 ∈ V)
98snn0d 4708 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴} ≠ ∅)
109necomd 2998 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴})
11 prnzg 4711 . . . . . 6 (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅)
128, 11syl 17 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} ≠ ∅)
1312necomd 2998 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴, 𝐵})
1410, 13jca 511 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}))
15 neanior 3036 . . 3 ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
1614, 15sylib 217 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
177, 16pm2.65i 193 1 ¬ ∅ ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  {csn 4558  {cpr 4560  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  opwo0id  5405  0nelelxp  5615
  Copyright terms: Public domain W3C validator