MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmge2nop0 Structured version   Visualization version   GIF version

Theorem fundmge2nop0 13851
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop 13852 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 16491. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundmge2nop0 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundmge2nop0
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7603 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
2 hashge2el2dif 13839 . . . . . . 7 ((dom 𝐺 ∈ V ∧ 2 ≤ (♯‘dom 𝐺)) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏)
32ex 416 . . . . . 6 (dom 𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
41, 3syl 17 . . . . 5 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
5 df-ne 3015 . . . . . . 7 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
6 elvv 5613 . . . . . . . . . . 11 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
7 difeq1 4077 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝐺 ∖ {∅}) = (⟨𝑥, 𝑦⟩ ∖ {∅}))
87funeqd 6365 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) ↔ Fun (⟨𝑥, 𝑦⟩ ∖ {∅})))
9 opwo0id 5374 . . . . . . . . . . . . . . . . . 18 𝑥, 𝑦⟩ = (⟨𝑥, 𝑦⟩ ∖ {∅})
109eqcomi 2833 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∖ {∅}) = ⟨𝑥, 𝑦
1110funeqi 6364 . . . . . . . . . . . . . . . 16 (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) ↔ Fun ⟨𝑥, 𝑦⟩)
12 dmeq 5759 . . . . . . . . . . . . . . . . . . . 20 (𝐺 = ⟨𝑥, 𝑦⟩ → dom 𝐺 = dom ⟨𝑥, 𝑦⟩)
1312eleq2d 2901 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑎 ∈ dom 𝐺𝑎 ∈ dom ⟨𝑥, 𝑦⟩))
1412eleq2d 2901 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑏 ∈ dom 𝐺𝑏 ∈ dom ⟨𝑥, 𝑦⟩))
1513, 14anbi12d 633 . . . . . . . . . . . . . . . . . 18 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)))
16 eqid 2824 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑦⟩ = ⟨𝑥, 𝑦
17 vex 3483 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
18 vex 3483 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
1916, 17, 18funopdmsn 6900 . . . . . . . . . . . . . . . . . . . 20 ((Fun ⟨𝑥, 𝑦⟩ ∧ 𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → 𝑎 = 𝑏)
20193expb 1117 . . . . . . . . . . . . . . . . . . 19 ((Fun ⟨𝑥, 𝑦⟩ ∧ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)) → 𝑎 = 𝑏)
2120expcom 417 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
2215, 21syl6bi 256 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏)))
2322com23 86 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2411, 23syl5bi 245 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
258, 24sylbid 243 . . . . . . . . . . . . . 14 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2625impcomd 415 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2726exlimivv 1934 . . . . . . . . . . . 12 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2827com12 32 . . . . . . . . . . 11 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
296, 28syl5bi 245 . . . . . . . . . 10 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏))
3029con3d 155 . . . . . . . . 9 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))
3130ex 416 . . . . . . . 8 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))
3231com23 86 . . . . . . 7 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
335, 32syl5bi 245 . . . . . 6 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3433rexlimivv 3285 . . . . 5 (∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
354, 34syl6 35 . . . 4 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3635com13 88 . . 3 (Fun (𝐺 ∖ {∅}) → (2 ≤ (♯‘dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))))
3736imp 410 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
38 prcnel 3504 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
3937, 38pm2.61d1 183 1 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  wrex 3134  Vcvv 3480  cdif 3916  c0 4275  {csn 4549  cop 4555   class class class wbr 5052   × cxp 5540  dom cdm 5542  Fun wfun 6337  cfv 6343  cle 10668  2c2 11685  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-fz 12891  df-hash 13692
This theorem is referenced by:  fundmge2nop  13852  fun2dmnop0  13853  funvtxdmge2val  26800  funiedgdmge2val  26801
  Copyright terms: Public domain W3C validator