MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmge2nop0 Structured version   Visualization version   GIF version

Theorem fundmge2nop0 14520
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop 14521 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 17170. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundmge2nop0 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundmge2nop0
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7897 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
2 hashge2el2dif 14498 . . . . . . 7 ((dom 𝐺 ∈ V ∧ 2 ≤ (♯‘dom 𝐺)) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏)
32ex 412 . . . . . 6 (dom 𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
41, 3syl 17 . . . . 5 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
5 df-ne 2933 . . . . . . 7 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
6 elvv 5729 . . . . . . . . . . 11 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
7 difeq1 4094 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝐺 ∖ {∅}) = (⟨𝑥, 𝑦⟩ ∖ {∅}))
87funeqd 6558 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) ↔ Fun (⟨𝑥, 𝑦⟩ ∖ {∅})))
9 opwo0id 5472 . . . . . . . . . . . . . . . . . 18 𝑥, 𝑦⟩ = (⟨𝑥, 𝑦⟩ ∖ {∅})
109eqcomi 2744 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∖ {∅}) = ⟨𝑥, 𝑦
1110funeqi 6557 . . . . . . . . . . . . . . . 16 (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) ↔ Fun ⟨𝑥, 𝑦⟩)
12 dmeq 5883 . . . . . . . . . . . . . . . . . . . 20 (𝐺 = ⟨𝑥, 𝑦⟩ → dom 𝐺 = dom ⟨𝑥, 𝑦⟩)
1312eleq2d 2820 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑎 ∈ dom 𝐺𝑎 ∈ dom ⟨𝑥, 𝑦⟩))
1412eleq2d 2820 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑏 ∈ dom 𝐺𝑏 ∈ dom ⟨𝑥, 𝑦⟩))
1513, 14anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)))
16 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑦⟩ = ⟨𝑥, 𝑦
17 vex 3463 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
18 vex 3463 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
1916, 17, 18funopdmsn 7140 . . . . . . . . . . . . . . . . . . . 20 ((Fun ⟨𝑥, 𝑦⟩ ∧ 𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → 𝑎 = 𝑏)
20193expb 1120 . . . . . . . . . . . . . . . . . . 19 ((Fun ⟨𝑥, 𝑦⟩ ∧ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)) → 𝑎 = 𝑏)
2120expcom 413 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
2215, 21biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏)))
2322com23 86 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2411, 23biimtrid 242 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
258, 24sylbid 240 . . . . . . . . . . . . . 14 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2625impcomd 411 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2726exlimivv 1932 . . . . . . . . . . . 12 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2827com12 32 . . . . . . . . . . 11 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
296, 28biimtrid 242 . . . . . . . . . 10 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏))
3029con3d 152 . . . . . . . . 9 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))
3130ex 412 . . . . . . . 8 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))
3231com23 86 . . . . . . 7 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
335, 32biimtrid 242 . . . . . 6 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3433rexlimivv 3186 . . . . 5 (∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
354, 34syl6 35 . . . 4 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3635com13 88 . . 3 (Fun (𝐺 ∖ {∅}) → (2 ≤ (♯‘dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))))
3736imp 406 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
38 prcnel 3486 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
3937, 38pm2.61d1 180 1 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  cdif 3923  c0 4308  {csn 4601  cop 4607   class class class wbr 5119   × cxp 5652  dom cdm 5654  Fun wfun 6525  cfv 6531  cle 11270  2c2 12295  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  fundmge2nop  14521  fun2dmnop0  14522  funvtxdmge2val  28990  funiedgdmge2val  28991
  Copyright terms: Public domain W3C validator