Step | Hyp | Ref
| Expression |
1 | | dmexg 7724 |
. . . . . 6
⊢ (𝐺 ∈ V → dom 𝐺 ∈ V) |
2 | | hashge2el2dif 14122 |
. . . . . . 7
⊢ ((dom
𝐺 ∈ V ∧ 2 ≤
(♯‘dom 𝐺))
→ ∃𝑎 ∈ dom
𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
3 | 2 | ex 412 |
. . . . . 6
⊢ (dom
𝐺 ∈ V → (2 ≤
(♯‘dom 𝐺)
→ ∃𝑎 ∈ dom
𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ V → (2 ≤
(♯‘dom 𝐺)
→ ∃𝑎 ∈ dom
𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
5 | | df-ne 2943 |
. . . . . . 7
⊢ (𝑎 ≠ 𝑏 ↔ ¬ 𝑎 = 𝑏) |
6 | | elvv 5652 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (V × V) ↔
∃𝑥∃𝑦 𝐺 = 〈𝑥, 𝑦〉) |
7 | | difeq1 4046 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (𝐺 ∖ {∅}) = (〈𝑥, 𝑦〉 ∖ {∅})) |
8 | 7 | funeqd 6440 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun (𝐺 ∖ {∅}) ↔ Fun (〈𝑥, 𝑦〉 ∖ {∅}))) |
9 | | opwo0id 5405 |
. . . . . . . . . . . . . . . . . 18
⊢
〈𝑥, 𝑦〉 = (〈𝑥, 𝑦〉 ∖ {∅}) |
10 | 9 | eqcomi 2747 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑥, 𝑦〉 ∖ {∅}) =
〈𝑥, 𝑦〉 |
11 | 10 | funeqi 6439 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
(〈𝑥, 𝑦〉 ∖ {∅}) ↔
Fun 〈𝑥, 𝑦〉) |
12 | | dmeq 5801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 = 〈𝑥, 𝑦〉 → dom 𝐺 = dom 〈𝑥, 𝑦〉) |
13 | 12 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (𝑎 ∈ dom 𝐺 ↔ 𝑎 ∈ dom 〈𝑥, 𝑦〉)) |
14 | 12 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (𝑏 ∈ dom 𝐺 ↔ 𝑏 ∈ dom 〈𝑥, 𝑦〉)) |
15 | 13, 14 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom 〈𝑥, 𝑦〉 ∧ 𝑏 ∈ dom 〈𝑥, 𝑦〉))) |
16 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈𝑥, 𝑦〉 = 〈𝑥, 𝑦〉 |
17 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ∈ V |
18 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
19 | 16, 17, 18 | funopdmsn 7004 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Fun
〈𝑥, 𝑦〉 ∧ 𝑎 ∈ dom 〈𝑥, 𝑦〉 ∧ 𝑏 ∈ dom 〈𝑥, 𝑦〉) → 𝑎 = 𝑏) |
20 | 19 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
〈𝑥, 𝑦〉 ∧ (𝑎 ∈ dom 〈𝑥, 𝑦〉 ∧ 𝑏 ∈ dom 〈𝑥, 𝑦〉)) → 𝑎 = 𝑏) |
21 | 20 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ dom 〈𝑥, 𝑦〉 ∧ 𝑏 ∈ dom 〈𝑥, 𝑦〉) → (Fun 〈𝑥, 𝑦〉 → 𝑎 = 𝑏)) |
22 | 15, 21 | syl6bi 252 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (Fun 〈𝑥, 𝑦〉 → 𝑎 = 𝑏))) |
23 | 22 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏))) |
24 | 11, 23 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun (〈𝑥, 𝑦〉 ∖ {∅}) → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏))) |
25 | 8, 24 | sylbid 239 |
. . . . . . . . . . . . . 14
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏))) |
26 | 25 | impcomd 411 |
. . . . . . . . . . . . 13
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏)) |
27 | 26 | exlimivv 1936 |
. . . . . . . . . . . 12
⊢
(∃𝑥∃𝑦 𝐺 = 〈𝑥, 𝑦〉 → (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏)) |
28 | 27 | com12 32 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥∃𝑦 𝐺 = 〈𝑥, 𝑦〉 → 𝑎 = 𝑏)) |
29 | 6, 28 | syl5bi 241 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) →
𝑎 = 𝑏)) |
30 | 29 | con3d 152 |
. . . . . . . . 9
⊢ (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))) |
31 | 30 | ex 412 |
. . . . . . . 8
⊢ ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))) |
32 | 31 | com23 86 |
. . . . . . 7
⊢ ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V)))) |
33 | 5, 32 | syl5bi 241 |
. . . . . 6
⊢ ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝑎 ≠ 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V)))) |
34 | 33 | rexlimivv 3220 |
. . . . 5
⊢
(∃𝑎 ∈ dom
𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V))) |
35 | 4, 34 | syl6 35 |
. . . 4
⊢ (𝐺 ∈ V → (2 ≤
(♯‘dom 𝐺)
→ (Fun (𝐺 ∖
{∅}) → ¬ 𝐺
∈ (V × V)))) |
36 | 35 | com13 88 |
. . 3
⊢ (Fun
(𝐺 ∖ {∅})
→ (2 ≤ (♯‘dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))) |
37 | 36 | imp 406 |
. 2
⊢ ((Fun
(𝐺 ∖ {∅}) ∧
2 ≤ (♯‘dom 𝐺)) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))) |
38 | | prcnel 3445 |
. 2
⊢ (¬
𝐺 ∈ V → ¬
𝐺 ∈ (V ×
V)) |
39 | 37, 38 | pm2.61d1 180 |
1
⊢ ((Fun
(𝐺 ∖ {∅}) ∧
2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V)) |