MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmge2nop0 Structured version   Visualization version   GIF version

Theorem fundmge2nop0 14494
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop 14495 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 17128. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundmge2nop0 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundmge2nop0
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7909 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
2 hashge2el2dif 14482 . . . . . . 7 ((dom 𝐺 ∈ V ∧ 2 ≤ (♯‘dom 𝐺)) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏)
32ex 411 . . . . . 6 (dom 𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
41, 3syl 17 . . . . 5 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
5 df-ne 2930 . . . . . . 7 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
6 elvv 5752 . . . . . . . . . . 11 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
7 difeq1 4111 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝐺 ∖ {∅}) = (⟨𝑥, 𝑦⟩ ∖ {∅}))
87funeqd 6576 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) ↔ Fun (⟨𝑥, 𝑦⟩ ∖ {∅})))
9 opwo0id 5499 . . . . . . . . . . . . . . . . . 18 𝑥, 𝑦⟩ = (⟨𝑥, 𝑦⟩ ∖ {∅})
109eqcomi 2734 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∖ {∅}) = ⟨𝑥, 𝑦
1110funeqi 6575 . . . . . . . . . . . . . . . 16 (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) ↔ Fun ⟨𝑥, 𝑦⟩)
12 dmeq 5906 . . . . . . . . . . . . . . . . . . . 20 (𝐺 = ⟨𝑥, 𝑦⟩ → dom 𝐺 = dom ⟨𝑥, 𝑦⟩)
1312eleq2d 2811 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑎 ∈ dom 𝐺𝑎 ∈ dom ⟨𝑥, 𝑦⟩))
1412eleq2d 2811 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑏 ∈ dom 𝐺𝑏 ∈ dom ⟨𝑥, 𝑦⟩))
1513, 14anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)))
16 eqid 2725 . . . . . . . . . . . . . . . . . . . . 21 𝑥, 𝑦⟩ = ⟨𝑥, 𝑦
17 vex 3465 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
18 vex 3465 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
1916, 17, 18funopdmsn 7159 . . . . . . . . . . . . . . . . . . . 20 ((Fun ⟨𝑥, 𝑦⟩ ∧ 𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → 𝑎 = 𝑏)
20193expb 1117 . . . . . . . . . . . . . . . . . . 19 ((Fun ⟨𝑥, 𝑦⟩ ∧ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)) → 𝑎 = 𝑏)
2120expcom 412 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
2215, 21biimtrdi 252 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏)))
2322com23 86 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2411, 23biimtrid 241 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
258, 24sylbid 239 . . . . . . . . . . . . . 14 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2625impcomd 410 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2726exlimivv 1927 . . . . . . . . . . . 12 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2827com12 32 . . . . . . . . . . 11 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
296, 28biimtrid 241 . . . . . . . . . 10 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏))
3029con3d 152 . . . . . . . . 9 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))
3130ex 411 . . . . . . . 8 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))
3231com23 86 . . . . . . 7 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
335, 32biimtrid 241 . . . . . 6 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3433rexlimivv 3189 . . . . 5 (∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
354, 34syl6 35 . . . 4 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3635com13 88 . . 3 (Fun (𝐺 ∖ {∅}) → (2 ≤ (♯‘dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))))
3736imp 405 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
38 prcnel 3486 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
3937, 38pm2.61d1 180 1 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2929  wrex 3059  Vcvv 3461  cdif 3941  c0 4322  {csn 4630  cop 4636   class class class wbr 5149   × cxp 5676  dom cdm 5678  Fun wfun 6543  cfv 6549  cle 11286  2c2 12305  chash 14330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-hash 14331
This theorem is referenced by:  fundmge2nop  14495  fun2dmnop0  14496  funvtxdmge2val  28901  funiedgdmge2val  28902
  Copyright terms: Public domain W3C validator