Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq123i | Structured version Visualization version GIF version |
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.) |
Ref | Expression |
---|---|
oveq123i.1 | ⊢ 𝐴 = 𝐶 |
oveq123i.2 | ⊢ 𝐵 = 𝐷 |
oveq123i.3 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
oveq123i | ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123i.1 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | oveq123i.2 | . . 3 ⊢ 𝐵 = 𝐷 | |
3 | 1, 2 | oveq12i 7325 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐶𝐹𝐷) |
4 | oveq123i.3 | . . 3 ⊢ 𝐹 = 𝐺 | |
5 | 4 | oveqi 7326 | . 2 ⊢ (𝐶𝐹𝐷) = (𝐶𝐺𝐷) |
6 | 3, 5 | eqtri 2765 | 1 ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 df-ov 7316 |
This theorem is referenced by: relowlpssretop 35595 mendvscafval 41226 cytpval 41245 |
Copyright terms: Public domain | W3C validator |