MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveq123i Structured version   Visualization version   GIF version

Theorem oveq123i 7289
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
Hypotheses
Ref Expression
oveq123i.1 𝐴 = 𝐶
oveq123i.2 𝐵 = 𝐷
oveq123i.3 𝐹 = 𝐺
Assertion
Ref Expression
oveq123i (𝐴𝐹𝐵) = (𝐶𝐺𝐷)

Proof of Theorem oveq123i
StepHypRef Expression
1 oveq123i.1 . . 3 𝐴 = 𝐶
2 oveq123i.2 . . 3 𝐵 = 𝐷
31, 2oveq12i 7287 . 2 (𝐴𝐹𝐵) = (𝐶𝐹𝐷)
4 oveq123i.3 . . 3 𝐹 = 𝐺
54oveqi 7288 . 2 (𝐶𝐹𝐷) = (𝐶𝐺𝐷)
63, 5eqtri 2766 1 (𝐴𝐹𝐵) = (𝐶𝐺𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  relowlpssretop  35535  mendvscafval  41015  cytpval  41034
  Copyright terms: Public domain W3C validator