![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq123i | Structured version Visualization version GIF version |
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.) |
Ref | Expression |
---|---|
oveq123i.1 | ⊢ 𝐴 = 𝐶 |
oveq123i.2 | ⊢ 𝐵 = 𝐷 |
oveq123i.3 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
oveq123i | ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123i.1 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | oveq123i.2 | . . 3 ⊢ 𝐵 = 𝐷 | |
3 | 1, 2 | oveq12i 7443 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐶𝐹𝐷) |
4 | oveq123i.3 | . . 3 ⊢ 𝐹 = 𝐺 | |
5 | 4 | oveqi 7444 | . 2 ⊢ (𝐶𝐹𝐷) = (𝐶𝐺𝐷) |
6 | 3, 5 | eqtri 2763 | 1 ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: relowlpssretop 37347 aks5lem3a 42171 mendvscafval 43175 cytpval 43191 |
Copyright terms: Public domain | W3C validator |