Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq123i | Structured version Visualization version GIF version |
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.) |
Ref | Expression |
---|---|
oveq123i.1 | ⊢ 𝐴 = 𝐶 |
oveq123i.2 | ⊢ 𝐵 = 𝐷 |
oveq123i.3 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
oveq123i | ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123i.1 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | oveq123i.2 | . . 3 ⊢ 𝐵 = 𝐷 | |
3 | 1, 2 | oveq12i 7287 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐶𝐹𝐷) |
4 | oveq123i.3 | . . 3 ⊢ 𝐹 = 𝐺 | |
5 | 4 | oveqi 7288 | . 2 ⊢ (𝐶𝐹𝐷) = (𝐶𝐺𝐷) |
6 | 3, 5 | eqtri 2766 | 1 ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: relowlpssretop 35535 mendvscafval 41015 cytpval 41034 |
Copyright terms: Public domain | W3C validator |