Step | Hyp | Ref
| Expression |
1 | | cytpval.p |
. . . . . . 7
⊢ 𝑃 =
(Poly1‘ℂfld) |
2 | 1 | eqcomi 2747 |
. . . . . 6
⊢
(Poly1‘ℂfld) = 𝑃 |
3 | 2 | fveq2i 6777 |
. . . . 5
⊢
(mulGrp‘(Poly1‘ℂfld)) =
(mulGrp‘𝑃) |
4 | | cytpval.q |
. . . . 5
⊢ 𝑄 = (mulGrp‘𝑃) |
5 | 3, 4 | eqtr4i 2769 |
. . . 4
⊢
(mulGrp‘(Poly1‘ℂfld)) = 𝑄 |
6 | 5 | a1i 11 |
. . 3
⊢ (𝑛 = 𝑁 →
(mulGrp‘(Poly1‘ℂfld)) = 𝑄) |
7 | | cytpval.o |
. . . . . . . 8
⊢ 𝑂 = (od‘𝑇) |
8 | | cytpval.t |
. . . . . . . . 9
⊢ 𝑇 =
((mulGrp‘ℂfld) ↾s (ℂ ∖
{0})) |
9 | 8 | fveq2i 6777 |
. . . . . . . 8
⊢
(od‘𝑇) =
(od‘((mulGrp‘ℂfld) ↾s (ℂ
∖ {0}))) |
10 | 7, 9 | eqtri 2766 |
. . . . . . 7
⊢ 𝑂 =
(od‘((mulGrp‘ℂfld) ↾s (ℂ
∖ {0}))) |
11 | 10 | cnveqi 5783 |
. . . . . 6
⊢ ◡𝑂 = ◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) |
12 | 11 | imaeq1i 5966 |
. . . . 5
⊢ (◡𝑂 “ {𝑛}) = (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) |
13 | | sneq 4571 |
. . . . . 6
⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) |
14 | 13 | imaeq2d 5969 |
. . . . 5
⊢ (𝑛 = 𝑁 → (◡𝑂 “ {𝑛}) = (◡𝑂 “ {𝑁})) |
15 | 12, 14 | eqtr3id 2792 |
. . . 4
⊢ (𝑛 = 𝑁 → (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) = (◡𝑂 “ {𝑁})) |
16 | | cytpval.x |
. . . . . . 7
⊢ 𝑋 =
(var1‘ℂfld) |
17 | | cytpval.a |
. . . . . . . . 9
⊢ 𝐴 = (algSc‘𝑃) |
18 | 1 | fveq2i 6777 |
. . . . . . . . 9
⊢
(algSc‘𝑃) =
(algSc‘(Poly1‘ℂfld)) |
19 | 17, 18 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐴 =
(algSc‘(Poly1‘ℂfld)) |
20 | 19 | fveq1i 6775 |
. . . . . . 7
⊢ (𝐴‘𝑟) =
((algSc‘(Poly1‘ℂfld))‘𝑟) |
21 | | cytpval.m |
. . . . . . . 8
⊢ − =
(-g‘𝑃) |
22 | 1 | fveq2i 6777 |
. . . . . . . 8
⊢
(-g‘𝑃) =
(-g‘(Poly1‘ℂfld)) |
23 | 21, 22 | eqtri 2766 |
. . . . . . 7
⊢ − =
(-g‘(Poly1‘ℂfld)) |
24 | 16, 20, 23 | oveq123i 7289 |
. . . . . 6
⊢ (𝑋 − (𝐴‘𝑟)) =
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)) |
25 | 24 | eqcomi 2747 |
. . . . 5
⊢
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)) = (𝑋 − (𝐴‘𝑟)) |
26 | 25 | a1i 11 |
. . . 4
⊢ (𝑛 = 𝑁 →
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)) = (𝑋 −
(𝐴‘𝑟))) |
27 | 15, 26 | mpteq12dv 5165 |
. . 3
⊢ (𝑛 = 𝑁 → (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) ↦
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))) = (𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟)))) |
28 | 6, 27 | oveq12d 7293 |
. 2
⊢ (𝑛 = 𝑁 →
((mulGrp‘(Poly1‘ℂfld))
Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) ↦
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) = (𝑄 Σg (𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟))))) |
29 | | df-cytp 41028 |
. 2
⊢ CytP =
(𝑛 ∈ ℕ ↦
((mulGrp‘(Poly1‘ℂfld))
Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) ↦
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) |
30 | | ovex 7308 |
. 2
⊢ (𝑄 Σg
(𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟)))) ∈ V |
31 | 28, 29, 30 | fvmpt 6875 |
1
⊢ (𝑁 ∈ ℕ →
(CytP‘𝑁) = (𝑄 Σg
(𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟))))) |