Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cytpval Structured version   Visualization version   GIF version

Theorem cytpval 41936
Description: Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cytpval.t 𝑇 = ((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))
cytpval.o 𝑂 = (odβ€˜π‘‡)
cytpval.p 𝑃 = (Poly1β€˜β„‚fld)
cytpval.x 𝑋 = (var1β€˜β„‚fld)
cytpval.q 𝑄 = (mulGrpβ€˜π‘ƒ)
cytpval.m βˆ’ = (-gβ€˜π‘ƒ)
cytpval.a 𝐴 = (algScβ€˜π‘ƒ)
Assertion
Ref Expression
cytpval (𝑁 ∈ β„• β†’ (CytPβ€˜π‘) = (𝑄 Ξ£g (π‘Ÿ ∈ (◑𝑂 β€œ {𝑁}) ↦ (𝑋 βˆ’ (π΄β€˜π‘Ÿ)))))
Distinct variable group:   𝑁,π‘Ÿ
Allowed substitution hints:   𝐴(π‘Ÿ)   𝑃(π‘Ÿ)   𝑄(π‘Ÿ)   𝑇(π‘Ÿ)   βˆ’ (π‘Ÿ)   𝑂(π‘Ÿ)   𝑋(π‘Ÿ)

Proof of Theorem cytpval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cytpval.p . . . . . . 7 𝑃 = (Poly1β€˜β„‚fld)
21eqcomi 2741 . . . . . 6 (Poly1β€˜β„‚fld) = 𝑃
32fveq2i 6891 . . . . 5 (mulGrpβ€˜(Poly1β€˜β„‚fld)) = (mulGrpβ€˜π‘ƒ)
4 cytpval.q . . . . 5 𝑄 = (mulGrpβ€˜π‘ƒ)
53, 4eqtr4i 2763 . . . 4 (mulGrpβ€˜(Poly1β€˜β„‚fld)) = 𝑄
65a1i 11 . . 3 (𝑛 = 𝑁 β†’ (mulGrpβ€˜(Poly1β€˜β„‚fld)) = 𝑄)
7 cytpval.o . . . . . . . 8 𝑂 = (odβ€˜π‘‡)
8 cytpval.t . . . . . . . . 9 𝑇 = ((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))
98fveq2i 6891 . . . . . . . 8 (odβ€˜π‘‡) = (odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0})))
107, 9eqtri 2760 . . . . . . 7 𝑂 = (odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0})))
1110cnveqi 5872 . . . . . 6 ◑𝑂 = β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0})))
1211imaeq1i 6054 . . . . 5 (◑𝑂 β€œ {𝑛}) = (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛})
13 sneq 4637 . . . . . 6 (𝑛 = 𝑁 β†’ {𝑛} = {𝑁})
1413imaeq2d 6057 . . . . 5 (𝑛 = 𝑁 β†’ (◑𝑂 β€œ {𝑛}) = (◑𝑂 β€œ {𝑁}))
1512, 14eqtr3id 2786 . . . 4 (𝑛 = 𝑁 β†’ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) = (◑𝑂 β€œ {𝑁}))
16 cytpval.x . . . . . . 7 𝑋 = (var1β€˜β„‚fld)
17 cytpval.a . . . . . . . . 9 𝐴 = (algScβ€˜π‘ƒ)
181fveq2i 6891 . . . . . . . . 9 (algScβ€˜π‘ƒ) = (algScβ€˜(Poly1β€˜β„‚fld))
1917, 18eqtri 2760 . . . . . . . 8 𝐴 = (algScβ€˜(Poly1β€˜β„‚fld))
2019fveq1i 6889 . . . . . . 7 (π΄β€˜π‘Ÿ) = ((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)
21 cytpval.m . . . . . . . 8 βˆ’ = (-gβ€˜π‘ƒ)
221fveq2i 6891 . . . . . . . 8 (-gβ€˜π‘ƒ) = (-gβ€˜(Poly1β€˜β„‚fld))
2321, 22eqtri 2760 . . . . . . 7 βˆ’ = (-gβ€˜(Poly1β€˜β„‚fld))
2416, 20, 23oveq123i 7419 . . . . . 6 (𝑋 βˆ’ (π΄β€˜π‘Ÿ)) = ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ))
2524eqcomi 2741 . . . . 5 ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)) = (𝑋 βˆ’ (π΄β€˜π‘Ÿ))
2625a1i 11 . . . 4 (𝑛 = 𝑁 β†’ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)) = (𝑋 βˆ’ (π΄β€˜π‘Ÿ)))
2715, 26mpteq12dv 5238 . . 3 (𝑛 = 𝑁 β†’ (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ))) = (π‘Ÿ ∈ (◑𝑂 β€œ {𝑁}) ↦ (𝑋 βˆ’ (π΄β€˜π‘Ÿ))))
286, 27oveq12d 7423 . 2 (𝑛 = 𝑁 β†’ ((mulGrpβ€˜(Poly1β€˜β„‚fld)) Ξ£g (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)))) = (𝑄 Ξ£g (π‘Ÿ ∈ (◑𝑂 β€œ {𝑁}) ↦ (𝑋 βˆ’ (π΄β€˜π‘Ÿ)))))
29 df-cytp 41930 . 2 CytP = (𝑛 ∈ β„• ↦ ((mulGrpβ€˜(Poly1β€˜β„‚fld)) Ξ£g (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)))))
30 ovex 7438 . 2 (𝑄 Ξ£g (π‘Ÿ ∈ (◑𝑂 β€œ {𝑁}) ↦ (𝑋 βˆ’ (π΄β€˜π‘Ÿ)))) ∈ V
3128, 29, 30fvmpt 6995 1 (𝑁 ∈ β„• β†’ (CytPβ€˜π‘) = (𝑄 Ξ£g (π‘Ÿ ∈ (◑𝑂 β€œ {𝑁}) ↦ (𝑋 βˆ’ (π΄β€˜π‘Ÿ)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βˆ– cdif 3944  {csn 4627   ↦ cmpt 5230  β—‘ccnv 5674   β€œ cima 5678  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  0cc0 11106  β„•cn 12208   β†Ύs cress 17169   Ξ£g cgsu 17382  -gcsg 18817  odcod 19386  mulGrpcmgp 19981  β„‚fldccnfld 20936  algSccascl 21398  var1cv1 21691  Poly1cpl1 21692  CytPccytp 41929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-cytp 41930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator