Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp21 Structured version   Visualization version   GIF version

Theorem pibp21 36599
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.)
Hypotheses
Ref Expression
pibp21.x 𝑋 = βˆͺ 𝐽
pibp21.21 π‘Š = {π‘₯ ∈ Top ∣ βˆ€π‘¦ ∈ (𝒫 βˆͺ π‘₯ βˆ– Fin)βˆƒπ‘§ ∈ βˆͺ π‘₯𝑧 ∈ ((limPtβ€˜π‘₯)β€˜π‘¦)}
Assertion
Ref Expression
pibp21 (𝐽 ∈ π‘Š ↔ (𝐽 ∈ Top ∧ βˆ€π‘¦ ∈ (𝒫 𝑋 βˆ– Fin)βˆƒπ‘§ ∈ 𝑋 𝑧 ∈ ((limPtβ€˜π½)β€˜π‘¦)))
Distinct variable groups:   π‘₯,𝐽,𝑦   𝑧,𝐽,π‘₯   π‘₯,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   π‘Š(π‘₯,𝑦,𝑧)

Proof of Theorem pibp21
StepHypRef Expression
1 unieq 4919 . . . . . 6 (π‘₯ = 𝐽 β†’ βˆͺ π‘₯ = βˆͺ 𝐽)
2 pibp21.x . . . . . 6 𝑋 = βˆͺ 𝐽
31, 2eqtr4di 2790 . . . . 5 (π‘₯ = 𝐽 β†’ βˆͺ π‘₯ = 𝑋)
43pweqd 4619 . . . 4 (π‘₯ = 𝐽 β†’ 𝒫 βˆͺ π‘₯ = 𝒫 𝑋)
54difeq1d 4121 . . 3 (π‘₯ = 𝐽 β†’ (𝒫 βˆͺ π‘₯ βˆ– Fin) = (𝒫 𝑋 βˆ– Fin))
6 fveq2 6891 . . . . . 6 (π‘₯ = 𝐽 β†’ (limPtβ€˜π‘₯) = (limPtβ€˜π½))
76fveq1d 6893 . . . . 5 (π‘₯ = 𝐽 β†’ ((limPtβ€˜π‘₯)β€˜π‘¦) = ((limPtβ€˜π½)β€˜π‘¦))
87eleq2d 2819 . . . 4 (π‘₯ = 𝐽 β†’ (𝑧 ∈ ((limPtβ€˜π‘₯)β€˜π‘¦) ↔ 𝑧 ∈ ((limPtβ€˜π½)β€˜π‘¦)))
93, 8rexeqbidv 3343 . . 3 (π‘₯ = 𝐽 β†’ (βˆƒπ‘§ ∈ βˆͺ π‘₯𝑧 ∈ ((limPtβ€˜π‘₯)β€˜π‘¦) ↔ βˆƒπ‘§ ∈ 𝑋 𝑧 ∈ ((limPtβ€˜π½)β€˜π‘¦)))
105, 9raleqbidv 3342 . 2 (π‘₯ = 𝐽 β†’ (βˆ€π‘¦ ∈ (𝒫 βˆͺ π‘₯ βˆ– Fin)βˆƒπ‘§ ∈ βˆͺ π‘₯𝑧 ∈ ((limPtβ€˜π‘₯)β€˜π‘¦) ↔ βˆ€π‘¦ ∈ (𝒫 𝑋 βˆ– Fin)βˆƒπ‘§ ∈ 𝑋 𝑧 ∈ ((limPtβ€˜π½)β€˜π‘¦)))
11 pibp21.21 . 2 π‘Š = {π‘₯ ∈ Top ∣ βˆ€π‘¦ ∈ (𝒫 βˆͺ π‘₯ βˆ– Fin)βˆƒπ‘§ ∈ βˆͺ π‘₯𝑧 ∈ ((limPtβ€˜π‘₯)β€˜π‘¦)}
1210, 11elrab2 3686 1 (𝐽 ∈ π‘Š ↔ (𝐽 ∈ Top ∧ βˆ€π‘¦ ∈ (𝒫 𝑋 βˆ– Fin)βˆƒπ‘§ ∈ 𝑋 𝑧 ∈ ((limPtβ€˜π½)β€˜π‘¦)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945  π’« cpw 4602  βˆͺ cuni 4908  β€˜cfv 6543  Fincfn 8941  Topctop 22615  limPtclp 22858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551
This theorem is referenced by:  pibt2  36601
  Copyright terms: Public domain W3C validator