| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp21 | Structured version Visualization version GIF version | ||
| Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.) |
| Ref | Expression |
|---|---|
| pibp21.x | ⊢ 𝑋 = ∪ 𝐽 |
| pibp21.21 | ⊢ 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)} |
| Ref | Expression |
|---|---|
| pibp21 | ⊢ (𝐽 ∈ 𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4890 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
| 2 | pibp21.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | eqtr4di 2783 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
| 4 | 3 | pweqd 4588 | . . . 4 ⊢ (𝑥 = 𝐽 → 𝒫 ∪ 𝑥 = 𝒫 𝑋) |
| 5 | 4 | difeq1d 4096 | . . 3 ⊢ (𝑥 = 𝐽 → (𝒫 ∪ 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin)) |
| 6 | fveq2 6865 | . . . . . 6 ⊢ (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽)) | |
| 7 | 6 | fveq1d 6867 | . . . . 5 ⊢ (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦)) |
| 8 | 7 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
| 9 | 3, 8 | rexeqbidv 3323 | . . 3 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
| 10 | 5, 9 | raleqbidv 3322 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
| 11 | pibp21.21 | . 2 ⊢ 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)} | |
| 12 | 10, 11 | elrab2 3670 | 1 ⊢ (𝐽 ∈ 𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 {crab 3411 ∖ cdif 3919 𝒫 cpw 4571 ∪ cuni 4879 ‘cfv 6519 Fincfn 8922 Topctop 22786 limPtclp 23027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 |
| This theorem is referenced by: pibt2 37402 |
| Copyright terms: Public domain | W3C validator |