Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp21 Structured version   Visualization version   GIF version

Theorem pibp21 37400
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.)
Hypotheses
Ref Expression
pibp21.x 𝑋 = 𝐽
pibp21.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibp21 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑧,𝐽,𝑥   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibp21
StepHypRef Expression
1 unieq 4890 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
2 pibp21.x . . . . . 6 𝑋 = 𝐽
31, 2eqtr4di 2783 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
43pweqd 4588 . . . 4 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝑋)
54difeq1d 4096 . . 3 (𝑥 = 𝐽 → (𝒫 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin))
6 fveq2 6865 . . . . . 6 (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽))
76fveq1d 6867 . . . . 5 (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦))
87eleq2d 2815 . . . 4 (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
93, 8rexeqbidv 3323 . . 3 (𝑥 = 𝐽 → (∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
105, 9raleqbidv 3322 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
11 pibp21.21 . 2 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
1210, 11elrab2 3670 1 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3046  wrex 3055  {crab 3411  cdif 3919  𝒫 cpw 4571   cuni 4879  cfv 6519  Fincfn 8922  Topctop 22786  limPtclp 23027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527
This theorem is referenced by:  pibt2  37402
  Copyright terms: Public domain W3C validator