Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp21 Structured version   Visualization version   GIF version

Theorem pibp21 35663
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.)
Hypotheses
Ref Expression
pibp21.x 𝑋 = 𝐽
pibp21.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibp21 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑧,𝐽,𝑥   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibp21
StepHypRef Expression
1 unieq 4860 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
2 pibp21.x . . . . . 6 𝑋 = 𝐽
31, 2eqtr4di 2794 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
43pweqd 4561 . . . 4 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝑋)
54difeq1d 4066 . . 3 (𝑥 = 𝐽 → (𝒫 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin))
6 fveq2 6811 . . . . . 6 (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽))
76fveq1d 6813 . . . . 5 (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦))
87eleq2d 2822 . . . 4 (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
93, 8rexeqbidv 3316 . . 3 (𝑥 = 𝐽 → (∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
105, 9raleqbidv 3315 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
11 pibp21.21 . 2 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
1210, 11elrab2 3636 1 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {crab 3403  cdif 3893  𝒫 cpw 4544   cuni 4849  cfv 6465  Fincfn 8782  Topctop 22122  limPtclp 22365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-iota 6417  df-fv 6473
This theorem is referenced by:  pibt2  35665
  Copyright terms: Public domain W3C validator