Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp21 | Structured version Visualization version GIF version |
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.) |
Ref | Expression |
---|---|
pibp21.x | ⊢ 𝑋 = ∪ 𝐽 |
pibp21.21 | ⊢ 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)} |
Ref | Expression |
---|---|
pibp21 | ⊢ (𝐽 ∈ 𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4850 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
2 | pibp21.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | eqtr4di 2796 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
4 | 3 | pweqd 4552 | . . . 4 ⊢ (𝑥 = 𝐽 → 𝒫 ∪ 𝑥 = 𝒫 𝑋) |
5 | 4 | difeq1d 4056 | . . 3 ⊢ (𝑥 = 𝐽 → (𝒫 ∪ 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin)) |
6 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽)) | |
7 | 6 | fveq1d 6776 | . . . . 5 ⊢ (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦)) |
8 | 7 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
9 | 3, 8 | rexeqbidv 3337 | . . 3 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
10 | 5, 9 | raleqbidv 3336 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
11 | pibp21.21 | . 2 ⊢ 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)} | |
12 | 10, 11 | elrab2 3627 | 1 ⊢ (𝐽 ∈ 𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {crab 3068 ∖ cdif 3884 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 Fincfn 8733 Topctop 22042 limPtclp 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: pibt2 35588 |
Copyright terms: Public domain | W3C validator |