Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp21 Structured version   Visualization version   GIF version

Theorem pibp21 37393
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.)
Hypotheses
Ref Expression
pibp21.x 𝑋 = 𝐽
pibp21.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibp21 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑧,𝐽,𝑥   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibp21
StepHypRef Expression
1 unieq 4869 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
2 pibp21.x . . . . . 6 𝑋 = 𝐽
31, 2eqtr4di 2782 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
43pweqd 4568 . . . 4 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝑋)
54difeq1d 4076 . . 3 (𝑥 = 𝐽 → (𝒫 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin))
6 fveq2 6822 . . . . . 6 (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽))
76fveq1d 6824 . . . . 5 (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦))
87eleq2d 2814 . . . 4 (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
93, 8rexeqbidv 3310 . . 3 (𝑥 = 𝐽 → (∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
105, 9raleqbidv 3309 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
11 pibp21.21 . 2 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
1210, 11elrab2 3651 1 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cdif 3900  𝒫 cpw 4551   cuni 4858  cfv 6482  Fincfn 8872  Topctop 22778  limPtclp 23019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490
This theorem is referenced by:  pibt2  37395
  Copyright terms: Public domain W3C validator