Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp21 | Structured version Visualization version GIF version |
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.) |
Ref | Expression |
---|---|
pibp21.x | ⊢ 𝑋 = ∪ 𝐽 |
pibp21.21 | ⊢ 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)} |
Ref | Expression |
---|---|
pibp21 | ⊢ (𝐽 ∈ 𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4847 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
2 | pibp21.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | eqtr4di 2797 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
4 | 3 | pweqd 4549 | . . . 4 ⊢ (𝑥 = 𝐽 → 𝒫 ∪ 𝑥 = 𝒫 𝑋) |
5 | 4 | difeq1d 4052 | . . 3 ⊢ (𝑥 = 𝐽 → (𝒫 ∪ 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin)) |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽)) | |
7 | 6 | fveq1d 6758 | . . . . 5 ⊢ (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦)) |
8 | 7 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
9 | 3, 8 | rexeqbidv 3328 | . . 3 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
10 | 5, 9 | raleqbidv 3327 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
11 | pibp21.21 | . 2 ⊢ 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 ∪ 𝑥 ∖ Fin)∃𝑧 ∈ ∪ 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)} | |
12 | 10, 11 | elrab2 3620 | 1 ⊢ (𝐽 ∈ 𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧 ∈ 𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ∖ cdif 3880 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Fincfn 8691 Topctop 21950 limPtclp 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: pibt2 35515 |
Copyright terms: Public domain | W3C validator |