![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp21 | Structured version Visualization version GIF version |
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space π is weakly countably compact if every infinite subset of π has a limit point. (Contributed by ML, 9-Dec-2020.) |
Ref | Expression |
---|---|
pibp21.x | β’ π = βͺ π½ |
pibp21.21 | β’ π = {π₯ β Top β£ βπ¦ β (π« βͺ π₯ β Fin)βπ§ β βͺ π₯π§ β ((limPtβπ₯)βπ¦)} |
Ref | Expression |
---|---|
pibp21 | β’ (π½ β π β (π½ β Top β§ βπ¦ β (π« π β Fin)βπ§ β π π§ β ((limPtβπ½)βπ¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4919 | . . . . . 6 β’ (π₯ = π½ β βͺ π₯ = βͺ π½) | |
2 | pibp21.x | . . . . . 6 β’ π = βͺ π½ | |
3 | 1, 2 | eqtr4di 2790 | . . . . 5 β’ (π₯ = π½ β βͺ π₯ = π) |
4 | 3 | pweqd 4619 | . . . 4 β’ (π₯ = π½ β π« βͺ π₯ = π« π) |
5 | 4 | difeq1d 4121 | . . 3 β’ (π₯ = π½ β (π« βͺ π₯ β Fin) = (π« π β Fin)) |
6 | fveq2 6891 | . . . . . 6 β’ (π₯ = π½ β (limPtβπ₯) = (limPtβπ½)) | |
7 | 6 | fveq1d 6893 | . . . . 5 β’ (π₯ = π½ β ((limPtβπ₯)βπ¦) = ((limPtβπ½)βπ¦)) |
8 | 7 | eleq2d 2819 | . . . 4 β’ (π₯ = π½ β (π§ β ((limPtβπ₯)βπ¦) β π§ β ((limPtβπ½)βπ¦))) |
9 | 3, 8 | rexeqbidv 3343 | . . 3 β’ (π₯ = π½ β (βπ§ β βͺ π₯π§ β ((limPtβπ₯)βπ¦) β βπ§ β π π§ β ((limPtβπ½)βπ¦))) |
10 | 5, 9 | raleqbidv 3342 | . 2 β’ (π₯ = π½ β (βπ¦ β (π« βͺ π₯ β Fin)βπ§ β βͺ π₯π§ β ((limPtβπ₯)βπ¦) β βπ¦ β (π« π β Fin)βπ§ β π π§ β ((limPtβπ½)βπ¦))) |
11 | pibp21.21 | . 2 β’ π = {π₯ β Top β£ βπ¦ β (π« βͺ π₯ β Fin)βπ§ β βͺ π₯π§ β ((limPtβπ₯)βπ¦)} | |
12 | 10, 11 | elrab2 3686 | 1 β’ (π½ β π β (π½ β Top β§ βπ¦ β (π« π β Fin)βπ§ β π π§ β ((limPtβπ½)βπ¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 {crab 3432 β cdif 3945 π« cpw 4602 βͺ cuni 4908 βcfv 6543 Fincfn 8941 Topctop 22615 limPtclp 22858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: pibt2 36601 |
Copyright terms: Public domain | W3C validator |