Proof of Theorem axlowdimlem13
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2ne0 12370 | . . . . . . . . 9
⊢ 2 ≠
0 | 
| 2 | 1 | neii 2942 | . . . . . . . 8
⊢  ¬ 2
= 0 | 
| 3 |  | eqcom 2744 | . . . . . . . . 9
⊢ (2 = 0
↔ 0 = 2) | 
| 4 |  | 1pneg1e0 12385 | . . . . . . . . . . 11
⊢ (1 + -1)
= 0 | 
| 5 | 4 | eqcomi 2746 | . . . . . . . . . 10
⊢ 0 = (1 +
-1) | 
| 6 |  | df-2 12329 | . . . . . . . . . 10
⊢ 2 = (1 +
1) | 
| 7 | 5, 6 | eqeq12i 2755 | . . . . . . . . 9
⊢ (0 = 2
↔ (1 + -1) = (1 + 1)) | 
| 8 |  | ax-1cn 11213 | . . . . . . . . . 10
⊢ 1 ∈
ℂ | 
| 9 |  | neg1cn 12380 | . . . . . . . . . 10
⊢ -1 ∈
ℂ | 
| 10 | 8, 9, 8 | addcani 11454 | . . . . . . . . 9
⊢ ((1 + -1)
= (1 + 1) ↔ -1 = 1) | 
| 11 | 3, 7, 10 | 3bitri 297 | . . . . . . . 8
⊢ (2 = 0
↔ -1 = 1) | 
| 12 | 2, 11 | mtbi 322 | . . . . . . 7
⊢  ¬ -1
= 1 | 
| 13 | 12 | intnanr 487 | . . . . . 6
⊢  ¬
(-1 = 1 ∧ 0 = 0) | 
| 14 |  | ax-1ne0 11224 | . . . . . . . . 9
⊢ 1 ≠
0 | 
| 15 | 14 | neii 2942 | . . . . . . . 8
⊢  ¬ 1
= 0 | 
| 16 |  | negeq0 11563 | . . . . . . . . 9
⊢ (1 ∈
ℂ → (1 = 0 ↔ -1 = 0)) | 
| 17 | 8, 16 | ax-mp 5 | . . . . . . . 8
⊢ (1 = 0
↔ -1 = 0) | 
| 18 | 15, 17 | mtbi 322 | . . . . . . 7
⊢  ¬ -1
= 0 | 
| 19 | 18 | intnanr 487 | . . . . . 6
⊢  ¬
(-1 = 0 ∧ 0 = 1) | 
| 20 | 13, 19 | pm3.2ni 881 | . . . . 5
⊢  ¬
((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1)) | 
| 21 |  | negex 11506 | . . . . . 6
⊢ -1 ∈
V | 
| 22 |  | c0ex 11255 | . . . . . 6
⊢ 0 ∈
V | 
| 23 |  | 1ex 11257 | . . . . . 6
⊢ 1 ∈
V | 
| 24 | 21, 22, 23, 22 | preq12b 4850 | . . . . 5
⊢ ({-1, 0}
= {1, 0} ↔ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 =
1))) | 
| 25 | 20, 24 | mtbir 323 | . . . 4
⊢  ¬
{-1, 0} = {1, 0} | 
| 26 |  | 3ex 12348 | . . . . . . . . 9
⊢ 3 ∈
V | 
| 27 | 26 | rnsnop 6244 | . . . . . . . 8
⊢ ran
{〈3, -1〉} = {-1} | 
| 28 | 27 | a1i 11 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {〈3, -1〉}
= {-1}) | 
| 29 |  | elnnuz 12922 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) | 
| 30 |  | eluzfz1 13571 | . . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) | 
| 31 | 29, 30 | sylbi 217 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 1 ∈
(1...𝑁)) | 
| 32 |  | df-3 12330 | . . . . . . . . . . . . . . 15
⊢ 3 = (2 +
1) | 
| 33 |  | 1e0p1 12775 | . . . . . . . . . . . . . . 15
⊢ 1 = (0 +
1) | 
| 34 | 32, 33 | eqeq12i 2755 | . . . . . . . . . . . . . 14
⊢ (3 = 1
↔ (2 + 1) = (0 + 1)) | 
| 35 |  | 2cn 12341 | . . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ | 
| 36 |  | 0cn 11253 | . . . . . . . . . . . . . . 15
⊢ 0 ∈
ℂ | 
| 37 | 35, 36, 8 | addcan2i 11455 | . . . . . . . . . . . . . 14
⊢ ((2 + 1)
= (0 + 1) ↔ 2 = 0) | 
| 38 | 34, 37 | bitri 275 | . . . . . . . . . . . . 13
⊢ (3 = 1
↔ 2 = 0) | 
| 39 | 38 | necon3bii 2993 | . . . . . . . . . . . 12
⊢ (3 ≠ 1
↔ 2 ≠ 0) | 
| 40 | 1, 39 | mpbir 231 | . . . . . . . . . . 11
⊢ 3 ≠
1 | 
| 41 | 40 | necomi 2995 | . . . . . . . . . 10
⊢ 1 ≠
3 | 
| 42 |  | eldifsn 4786 | . . . . . . . . . 10
⊢ (1 ∈
((1...𝑁) ∖ {3})
↔ (1 ∈ (1...𝑁)
∧ 1 ≠ 3)) | 
| 43 | 31, 41, 42 | sylanblrc 590 | . . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 1 ∈
((1...𝑁) ∖
{3})) | 
| 44 | 43 | adantr 480 | . . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ((1...𝑁) ∖ {3})) | 
| 45 |  | ne0i 4341 | . . . . . . . 8
⊢ (1 ∈
((1...𝑁) ∖ {3})
→ ((1...𝑁) ∖
{3}) ≠ ∅) | 
| 46 |  | rnxp 6190 | . . . . . . . 8
⊢
(((1...𝑁) ∖
{3}) ≠ ∅ → ran (((1...𝑁) ∖ {3}) × {0}) =
{0}) | 
| 47 | 44, 45, 46 | 3syl 18 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {3}) × {0}) =
{0}) | 
| 48 | 28, 47 | uneq12d 4169 | . . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {〈3,
-1〉} ∪ ran (((1...𝑁) ∖ {3}) × {0})) = ({-1} ∪
{0})) | 
| 49 |  | rnun 6165 | . . . . . 6
⊢ ran
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) = (ran
{〈3, -1〉} ∪ ran (((1...𝑁) ∖ {3}) ×
{0})) | 
| 50 |  | df-pr 4629 | . . . . . 6
⊢ {-1, 0} =
({-1} ∪ {0}) | 
| 51 | 48, 49, 50 | 3eqtr4g 2802 | . . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) = {-1, 0}) | 
| 52 |  | ovex 7464 | . . . . . . . . 9
⊢ (𝐼 + 1) ∈ V | 
| 53 | 52 | rnsnop 6244 | . . . . . . . 8
⊢ ran
{〈(𝐼 + 1), 1〉} =
{1} | 
| 54 | 53 | a1i 11 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {〈(𝐼 + 1), 1〉} =
{1}) | 
| 55 |  | nnz 12634 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 56 |  | fzssp1 13607 | . . . . . . . . . . . 12
⊢
(1...(𝑁 − 1))
⊆ (1...((𝑁 − 1)
+ 1)) | 
| 57 |  | zcn 12618 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 58 |  | npcan1 11688 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | 
| 59 | 58 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ →
(1...((𝑁 − 1) + 1)) =
(1...𝑁)) | 
| 60 | 57, 59 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ →
(1...((𝑁 − 1) + 1)) =
(1...𝑁)) | 
| 61 | 56, 60 | sseqtrid 4026 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ →
(1...(𝑁 − 1)) ⊆
(1...𝑁)) | 
| 62 | 55, 61 | syl 17 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(1...(𝑁 − 1)) ⊆
(1...𝑁)) | 
| 63 | 62 | sselda 3983 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ (1...𝑁)) | 
| 64 |  | elfzelz 13564 | . . . . . . . . . . . 12
⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ) | 
| 65 | 64 | zred 12722 | . . . . . . . . . . 11
⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ) | 
| 66 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝐼 ∈ ℝ → 𝐼 ∈
ℝ) | 
| 67 |  | ltp1 12107 | . . . . . . . . . . . 12
⊢ (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1)) | 
| 68 | 66, 67 | ltned 11397 | . . . . . . . . . . 11
⊢ (𝐼 ∈ ℝ → 𝐼 ≠ (𝐼 + 1)) | 
| 69 | 65, 68 | syl 17 | . . . . . . . . . 10
⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≠ (𝐼 + 1)) | 
| 70 | 69 | adantl 481 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≠ (𝐼 + 1)) | 
| 71 |  | eldifsn 4786 | . . . . . . . . 9
⊢ (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐼 ∈ (1...𝑁) ∧ 𝐼 ≠ (𝐼 + 1))) | 
| 72 | 63, 70, 71 | sylanbrc 583 | . . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)})) | 
| 73 |  | ne0i 4341 | . . . . . . . 8
⊢ (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅) | 
| 74 |  | rnxp 6190 | . . . . . . . 8
⊢
(((1...𝑁) ∖
{(𝐼 + 1)}) ≠ ∅
→ ran (((1...𝑁)
∖ {(𝐼 + 1)}) ×
{0}) = {0}) | 
| 75 | 72, 73, 74 | 3syl 18 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0}) | 
| 76 | 54, 75 | uneq12d 4169 | . . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {〈(𝐼 + 1), 1〉} ∪ ran
(((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = ({1}
∪ {0})) | 
| 77 |  | rnun 6165 | . . . . . 6
⊢ ran
({〈(𝐼 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝐼 + 1)}) × {0})) =
(ran {〈(𝐼 + 1),
1〉} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | 
| 78 |  | df-pr 4629 | . . . . . 6
⊢ {1, 0} =
({1} ∪ {0}) | 
| 79 | 76, 77, 78 | 3eqtr4g 2802 | . . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({〈(𝐼 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = {1,
0}) | 
| 80 | 51, 79 | eqeq12d 2753 | . . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) = ran ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ↔ {-1, 0} = {1,
0})) | 
| 81 | 25, 80 | mtbiri 327 | . . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ran ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) = ran ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))) | 
| 82 |  | rneq 5947 | . . 3
⊢
(({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) =
({〈(𝐼 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝐼 + 1)}) × {0}))
→ ran ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran
({〈(𝐼 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝐼 + 1)}) ×
{0}))) | 
| 83 | 81, 82 | nsyl 140 | . 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))) | 
| 84 |  | axlowdimlem13.1 | . . . 4
⊢ 𝑃 = ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) | 
| 85 |  | axlowdimlem13.2 | . . . 4
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | 
| 86 | 84, 85 | eqeq12i 2755 | . . 3
⊢ (𝑃 = 𝑄 ↔ ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) = ({〈(𝐼
+ 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))) | 
| 87 | 86 | necon3abii 2987 | . 2
⊢ (𝑃 ≠ 𝑄 ↔ ¬ ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) = ({〈(𝐼
+ 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))) | 
| 88 | 83, 87 | sylibr 234 | 1
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃 ≠ 𝑄) |