MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem13 Structured version   Visualization version   GIF version

Theorem axlowdimlem13 28881
Description: Lemma for axlowdim 28888. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem13.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem13.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem13 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)

Proof of Theorem axlowdimlem13
StepHypRef Expression
1 2ne0 12290 . . . . . . . . 9 2 ≠ 0
21neii 2927 . . . . . . . 8 ¬ 2 = 0
3 eqcom 2736 . . . . . . . . 9 (2 = 0 ↔ 0 = 2)
4 1pneg1e0 12300 . . . . . . . . . . 11 (1 + -1) = 0
54eqcomi 2738 . . . . . . . . . 10 0 = (1 + -1)
6 df-2 12249 . . . . . . . . . 10 2 = (1 + 1)
75, 6eqeq12i 2747 . . . . . . . . 9 (0 = 2 ↔ (1 + -1) = (1 + 1))
8 ax-1cn 11126 . . . . . . . . . 10 1 ∈ ℂ
9 neg1cn 12171 . . . . . . . . . 10 -1 ∈ ℂ
108, 9, 8addcani 11367 . . . . . . . . 9 ((1 + -1) = (1 + 1) ↔ -1 = 1)
113, 7, 103bitri 297 . . . . . . . 8 (2 = 0 ↔ -1 = 1)
122, 11mtbi 322 . . . . . . 7 ¬ -1 = 1
1312intnanr 487 . . . . . 6 ¬ (-1 = 1 ∧ 0 = 0)
14 ax-1ne0 11137 . . . . . . . . 9 1 ≠ 0
1514neii 2927 . . . . . . . 8 ¬ 1 = 0
16 negeq0 11476 . . . . . . . . 9 (1 ∈ ℂ → (1 = 0 ↔ -1 = 0))
178, 16ax-mp 5 . . . . . . . 8 (1 = 0 ↔ -1 = 0)
1815, 17mtbi 322 . . . . . . 7 ¬ -1 = 0
1918intnanr 487 . . . . . 6 ¬ (-1 = 0 ∧ 0 = 1)
2013, 19pm3.2ni 880 . . . . 5 ¬ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1))
21 negex 11419 . . . . . 6 -1 ∈ V
22 c0ex 11168 . . . . . 6 0 ∈ V
23 1ex 11170 . . . . . 6 1 ∈ V
2421, 22, 23, 22preq12b 4814 . . . . 5 ({-1, 0} = {1, 0} ↔ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1)))
2520, 24mtbir 323 . . . 4 ¬ {-1, 0} = {1, 0}
26 3ex 12268 . . . . . . . . 9 3 ∈ V
2726rnsnop 6197 . . . . . . . 8 ran {⟨3, -1⟩} = {-1}
2827a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨3, -1⟩} = {-1})
29 elnnuz 12837 . . . . . . . . . . 11 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
30 eluzfz1 13492 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
3129, 30sylbi 217 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
32 df-3 12250 . . . . . . . . . . . . . . 15 3 = (2 + 1)
33 1e0p1 12691 . . . . . . . . . . . . . . 15 1 = (0 + 1)
3432, 33eqeq12i 2747 . . . . . . . . . . . . . 14 (3 = 1 ↔ (2 + 1) = (0 + 1))
35 2cn 12261 . . . . . . . . . . . . . . 15 2 ∈ ℂ
36 0cn 11166 . . . . . . . . . . . . . . 15 0 ∈ ℂ
3735, 36, 8addcan2i 11368 . . . . . . . . . . . . . 14 ((2 + 1) = (0 + 1) ↔ 2 = 0)
3834, 37bitri 275 . . . . . . . . . . . . 13 (3 = 1 ↔ 2 = 0)
3938necon3bii 2977 . . . . . . . . . . . 12 (3 ≠ 1 ↔ 2 ≠ 0)
401, 39mpbir 231 . . . . . . . . . . 11 3 ≠ 1
4140necomi 2979 . . . . . . . . . 10 1 ≠ 3
42 eldifsn 4750 . . . . . . . . . 10 (1 ∈ ((1...𝑁) ∖ {3}) ↔ (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
4331, 41, 42sylanblrc 590 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ((1...𝑁) ∖ {3}))
4443adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ((1...𝑁) ∖ {3}))
45 ne0i 4304 . . . . . . . 8 (1 ∈ ((1...𝑁) ∖ {3}) → ((1...𝑁) ∖ {3}) ≠ ∅)
46 rnxp 6143 . . . . . . . 8 (((1...𝑁) ∖ {3}) ≠ ∅ → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4744, 45, 463syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4828, 47uneq12d 4132 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0})) = ({-1} ∪ {0}))
49 rnun 6118 . . . . . 6 ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0}))
50 df-pr 4592 . . . . . 6 {-1, 0} = ({-1} ∪ {0})
5148, 49, 503eqtr4g 2789 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = {-1, 0})
52 ovex 7420 . . . . . . . . 9 (𝐼 + 1) ∈ V
5352rnsnop 6197 . . . . . . . 8 ran {⟨(𝐼 + 1), 1⟩} = {1}
5453a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨(𝐼 + 1), 1⟩} = {1})
55 nnz 12550 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
56 fzssp1 13528 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
57 zcn 12534 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
58 npcan1 11603 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
5958oveq2d 7403 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6057, 59syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6156, 60sseqtrid 3989 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6255, 61syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6362sselda 3946 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ (1...𝑁))
64 elfzelz 13485 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
6564zred 12638 . . . . . . . . . . 11 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
66 id 22 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
67 ltp1 12022 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
6866, 67ltned 11310 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ≠ (𝐼 + 1))
6965, 68syl 17 . . . . . . . . . 10 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≠ (𝐼 + 1))
7069adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≠ (𝐼 + 1))
71 eldifsn 4750 . . . . . . . . 9 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐼 ∈ (1...𝑁) ∧ 𝐼 ≠ (𝐼 + 1)))
7263, 70, 71sylanbrc 583 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))
73 ne0i 4304 . . . . . . . 8 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅)
74 rnxp 6143 . . . . . . . 8 (((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅ → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7572, 73, 743syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7654, 75uneq12d 4132 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = ({1} ∪ {0}))
77 rnun 6118 . . . . . 6 ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
78 df-pr 4592 . . . . . 6 {1, 0} = ({1} ∪ {0})
7976, 77, 783eqtr4g 2789 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = {1, 0})
8051, 79eqeq12d 2745 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ↔ {-1, 0} = {1, 0}))
8125, 80mtbiri 327 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
82 rneq 5900 . . 3 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8381, 82nsyl 140 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
84 axlowdimlem13.1 . . . 4 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
85 axlowdimlem13.2 . . . 4 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
8684, 85eqeq12i 2747 . . 3 (𝑃 = 𝑄 ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8786necon3abii 2971 . 2 (𝑃𝑄 ↔ ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8883, 87sylibr 234 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595   × cxp 5636  ran crn 5639  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  -cneg 11406  cn 12186  2c2 12241  3c3 12242  cz 12529  cuz 12793  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  axlowdimlem15  28883
  Copyright terms: Public domain W3C validator