MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem13 Structured version   Visualization version   GIF version

Theorem axlowdimlem13 26755
Description: Lemma for axlowdim 26762. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem13.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem13.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem13 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)

Proof of Theorem axlowdimlem13
StepHypRef Expression
1 2ne0 11738 . . . . . . . . 9 2 ≠ 0
21neii 3016 . . . . . . . 8 ¬ 2 = 0
3 eqcom 2831 . . . . . . . . 9 (2 = 0 ↔ 0 = 2)
4 1pneg1e0 11753 . . . . . . . . . . 11 (1 + -1) = 0
54eqcomi 2833 . . . . . . . . . 10 0 = (1 + -1)
6 df-2 11697 . . . . . . . . . 10 2 = (1 + 1)
75, 6eqeq12i 2839 . . . . . . . . 9 (0 = 2 ↔ (1 + -1) = (1 + 1))
8 ax-1cn 10593 . . . . . . . . . 10 1 ∈ ℂ
9 neg1cn 11748 . . . . . . . . . 10 -1 ∈ ℂ
108, 9, 8addcani 10831 . . . . . . . . 9 ((1 + -1) = (1 + 1) ↔ -1 = 1)
113, 7, 103bitri 300 . . . . . . . 8 (2 = 0 ↔ -1 = 1)
122, 11mtbi 325 . . . . . . 7 ¬ -1 = 1
1312intnanr 491 . . . . . 6 ¬ (-1 = 1 ∧ 0 = 0)
14 ax-1ne0 10604 . . . . . . . . 9 1 ≠ 0
1514neii 3016 . . . . . . . 8 ¬ 1 = 0
16 negeq0 10938 . . . . . . . . 9 (1 ∈ ℂ → (1 = 0 ↔ -1 = 0))
178, 16ax-mp 5 . . . . . . . 8 (1 = 0 ↔ -1 = 0)
1815, 17mtbi 325 . . . . . . 7 ¬ -1 = 0
1918intnanr 491 . . . . . 6 ¬ (-1 = 0 ∧ 0 = 1)
2013, 19pm3.2ni 878 . . . . 5 ¬ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1))
21 negex 10882 . . . . . 6 -1 ∈ V
22 c0ex 10633 . . . . . 6 0 ∈ V
23 1ex 10635 . . . . . 6 1 ∈ V
2421, 22, 23, 22preq12b 4765 . . . . 5 ({-1, 0} = {1, 0} ↔ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1)))
2520, 24mtbir 326 . . . 4 ¬ {-1, 0} = {1, 0}
26 3ex 11716 . . . . . . . . 9 3 ∈ V
2726rnsnop 6068 . . . . . . . 8 ran {⟨3, -1⟩} = {-1}
2827a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨3, -1⟩} = {-1})
29 elnnuz 12279 . . . . . . . . . . 11 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
30 eluzfz1 12918 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
3129, 30sylbi 220 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
32 df-3 11698 . . . . . . . . . . . . . . 15 3 = (2 + 1)
33 1e0p1 12137 . . . . . . . . . . . . . . 15 1 = (0 + 1)
3432, 33eqeq12i 2839 . . . . . . . . . . . . . 14 (3 = 1 ↔ (2 + 1) = (0 + 1))
35 2cn 11709 . . . . . . . . . . . . . . 15 2 ∈ ℂ
36 0cn 10631 . . . . . . . . . . . . . . 15 0 ∈ ℂ
3735, 36, 8addcan2i 10832 . . . . . . . . . . . . . 14 ((2 + 1) = (0 + 1) ↔ 2 = 0)
3834, 37bitri 278 . . . . . . . . . . . . 13 (3 = 1 ↔ 2 = 0)
3938necon3bii 3066 . . . . . . . . . . . 12 (3 ≠ 1 ↔ 2 ≠ 0)
401, 39mpbir 234 . . . . . . . . . . 11 3 ≠ 1
4140necomi 3068 . . . . . . . . . 10 1 ≠ 3
42 eldifsn 4704 . . . . . . . . . 10 (1 ∈ ((1...𝑁) ∖ {3}) ↔ (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
4331, 41, 42sylanblrc 593 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ((1...𝑁) ∖ {3}))
4443adantr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ((1...𝑁) ∖ {3}))
45 ne0i 4283 . . . . . . . 8 (1 ∈ ((1...𝑁) ∖ {3}) → ((1...𝑁) ∖ {3}) ≠ ∅)
46 rnxp 6014 . . . . . . . 8 (((1...𝑁) ∖ {3}) ≠ ∅ → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4744, 45, 463syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4828, 47uneq12d 4126 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0})) = ({-1} ∪ {0}))
49 rnun 5991 . . . . . 6 ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0}))
50 df-pr 4553 . . . . . 6 {-1, 0} = ({-1} ∪ {0})
5148, 49, 503eqtr4g 2884 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = {-1, 0})
52 ovex 7182 . . . . . . . . 9 (𝐼 + 1) ∈ V
5352rnsnop 6068 . . . . . . . 8 ran {⟨(𝐼 + 1), 1⟩} = {1}
5453a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨(𝐼 + 1), 1⟩} = {1})
55 nnz 12001 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
56 fzssp1 12954 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
57 zcn 11983 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
58 npcan1 11063 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
5958oveq2d 7165 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6057, 59syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6156, 60sseqtrid 4005 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6255, 61syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6362sselda 3953 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ (1...𝑁))
64 elfzelz 12911 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
6564zred 12084 . . . . . . . . . . 11 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
66 id 22 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
67 ltp1 11478 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
6866, 67ltned 10774 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ≠ (𝐼 + 1))
6965, 68syl 17 . . . . . . . . . 10 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≠ (𝐼 + 1))
7069adantl 485 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≠ (𝐼 + 1))
71 eldifsn 4704 . . . . . . . . 9 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐼 ∈ (1...𝑁) ∧ 𝐼 ≠ (𝐼 + 1)))
7263, 70, 71sylanbrc 586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))
73 ne0i 4283 . . . . . . . 8 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅)
74 rnxp 6014 . . . . . . . 8 (((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅ → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7572, 73, 743syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7654, 75uneq12d 4126 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = ({1} ∪ {0}))
77 rnun 5991 . . . . . 6 ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
78 df-pr 4553 . . . . . 6 {1, 0} = ({1} ∪ {0})
7976, 77, 783eqtr4g 2884 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = {1, 0})
8051, 79eqeq12d 2840 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ↔ {-1, 0} = {1, 0}))
8125, 80mtbiri 330 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
82 rneq 5793 . . 3 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8381, 82nsyl 142 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
84 axlowdimlem13.1 . . . 4 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
85 axlowdimlem13.2 . . . 4 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
8684, 85eqeq12i 2839 . . 3 (𝑃 = 𝑄 ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8786necon3abii 3060 . 2 (𝑃𝑄 ↔ ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8883, 87sylibr 237 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  cdif 3916  cun 3917  wss 3919  c0 4276  {csn 4550  {cpr 4552  cop 4556   × cxp 5540  ran crn 5543  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  1c1 10536   + caddc 10538  cmin 10868  -cneg 10869  cn 11634  2c2 11689  3c3 11690  cz 11978  cuz 12240  ...cfz 12894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895
This theorem is referenced by:  axlowdimlem15  26757
  Copyright terms: Public domain W3C validator