MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem13 Structured version   Visualization version   GIF version

Theorem axlowdimlem13 26303
Description: Lemma for axlowdim 26310. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem13.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem13.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem13 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)

Proof of Theorem axlowdimlem13
StepHypRef Expression
1 2ne0 11486 . . . . . . . . 9 2 ≠ 0
21neii 2971 . . . . . . . 8 ¬ 2 = 0
3 eqcom 2785 . . . . . . . . 9 (2 = 0 ↔ 0 = 2)
4 1pneg1e0 11501 . . . . . . . . . . 11 (1 + -1) = 0
54eqcomi 2787 . . . . . . . . . 10 0 = (1 + -1)
6 df-2 11438 . . . . . . . . . 10 2 = (1 + 1)
75, 6eqeq12i 2792 . . . . . . . . 9 (0 = 2 ↔ (1 + -1) = (1 + 1))
8 ax-1cn 10330 . . . . . . . . . 10 1 ∈ ℂ
9 neg1cn 11496 . . . . . . . . . 10 -1 ∈ ℂ
108, 9, 8addcani 10569 . . . . . . . . 9 ((1 + -1) = (1 + 1) ↔ -1 = 1)
113, 7, 103bitri 289 . . . . . . . 8 (2 = 0 ↔ -1 = 1)
122, 11mtbi 314 . . . . . . 7 ¬ -1 = 1
1312intnanr 483 . . . . . 6 ¬ (-1 = 1 ∧ 0 = 0)
14 ax-1ne0 10341 . . . . . . . . 9 1 ≠ 0
1514neii 2971 . . . . . . . 8 ¬ 1 = 0
16 negeq0 10677 . . . . . . . . 9 (1 ∈ ℂ → (1 = 0 ↔ -1 = 0))
178, 16ax-mp 5 . . . . . . . 8 (1 = 0 ↔ -1 = 0)
1815, 17mtbi 314 . . . . . . 7 ¬ -1 = 0
1918intnanr 483 . . . . . 6 ¬ (-1 = 0 ∧ 0 = 1)
2013, 19pm3.2ni 867 . . . . 5 ¬ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1))
21 negex 10620 . . . . . 6 -1 ∈ V
22 c0ex 10370 . . . . . 6 0 ∈ V
23 1ex 10372 . . . . . 6 1 ∈ V
2421, 22, 23, 22preq12b 4610 . . . . 5 ({-1, 0} = {1, 0} ↔ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1)))
2520, 24mtbir 315 . . . 4 ¬ {-1, 0} = {1, 0}
26 3ex 11458 . . . . . . . . 9 3 ∈ V
2726rnsnop 5871 . . . . . . . 8 ran {⟨3, -1⟩} = {-1}
2827a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨3, -1⟩} = {-1})
29 elnnuz 12030 . . . . . . . . . . . 12 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
30 eluzfz1 12665 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
3129, 30sylbi 209 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
32 df-3 11439 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
33 1e0p1 11888 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
3432, 33eqeq12i 2792 . . . . . . . . . . . . . . 15 (3 = 1 ↔ (2 + 1) = (0 + 1))
35 2cn 11450 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
36 0cn 10368 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
3735, 36, 8addcan2i 10570 . . . . . . . . . . . . . . 15 ((2 + 1) = (0 + 1) ↔ 2 = 0)
3834, 37bitri 267 . . . . . . . . . . . . . 14 (3 = 1 ↔ 2 = 0)
3938necon3bii 3021 . . . . . . . . . . . . 13 (3 ≠ 1 ↔ 2 ≠ 0)
401, 39mpbir 223 . . . . . . . . . . . 12 3 ≠ 1
4140necomi 3023 . . . . . . . . . . 11 1 ≠ 3
4231, 41jctir 516 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
43 eldifsn 4550 . . . . . . . . . 10 (1 ∈ ((1...𝑁) ∖ {3}) ↔ (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
4442, 43sylibr 226 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ((1...𝑁) ∖ {3}))
4544adantr 474 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ((1...𝑁) ∖ {3}))
46 ne0i 4149 . . . . . . . 8 (1 ∈ ((1...𝑁) ∖ {3}) → ((1...𝑁) ∖ {3}) ≠ ∅)
47 rnxp 5818 . . . . . . . 8 (((1...𝑁) ∖ {3}) ≠ ∅ → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4845, 46, 473syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4928, 48uneq12d 3991 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0})) = ({-1} ∪ {0}))
50 rnun 5795 . . . . . 6 ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0}))
51 df-pr 4401 . . . . . 6 {-1, 0} = ({-1} ∪ {0})
5249, 50, 513eqtr4g 2839 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = {-1, 0})
53 ovex 6954 . . . . . . . . 9 (𝐼 + 1) ∈ V
5453rnsnop 5871 . . . . . . . 8 ran {⟨(𝐼 + 1), 1⟩} = {1}
5554a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨(𝐼 + 1), 1⟩} = {1})
56 nnz 11751 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzssp1 12701 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
58 zcn 11733 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
59 npcan1 10800 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6059oveq2d 6938 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6158, 60syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6257, 61syl5sseq 3872 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6356, 62syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6463sselda 3821 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ (1...𝑁))
65 elfzelz 12659 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
6665zred 11834 . . . . . . . . . . 11 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
67 id 22 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
68 ltp1 11215 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
6967, 68ltned 10512 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ≠ (𝐼 + 1))
7066, 69syl 17 . . . . . . . . . 10 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≠ (𝐼 + 1))
7170adantl 475 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≠ (𝐼 + 1))
72 eldifsn 4550 . . . . . . . . 9 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐼 ∈ (1...𝑁) ∧ 𝐼 ≠ (𝐼 + 1)))
7364, 71, 72sylanbrc 578 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))
74 ne0i 4149 . . . . . . . 8 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅)
75 rnxp 5818 . . . . . . . 8 (((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅ → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7673, 74, 753syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7755, 76uneq12d 3991 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = ({1} ∪ {0}))
78 rnun 5795 . . . . . 6 ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
79 df-pr 4401 . . . . . 6 {1, 0} = ({1} ∪ {0})
8077, 78, 793eqtr4g 2839 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = {1, 0})
8152, 80eqeq12d 2793 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ↔ {-1, 0} = {1, 0}))
8225, 81mtbiri 319 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
83 rneq 5596 . . 3 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8482, 83nsyl 138 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
85 axlowdimlem13.1 . . . 4 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
86 axlowdimlem13.2 . . . 4 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
8785, 86eqeq12i 2792 . . 3 (𝑃 = 𝑄 ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8887necon3abii 3015 . 2 (𝑃𝑄 ↔ ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8984, 88sylibr 226 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  cdif 3789  cun 3790  wss 3792  c0 4141  {csn 4398  {cpr 4400  cop 4404   × cxp 5353  ran crn 5356  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275  cmin 10606  -cneg 10607  cn 11374  2c2 11430  3c3 11431  cz 11728  cuz 11992  ...cfz 12643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644
This theorem is referenced by:  axlowdimlem15  26305
  Copyright terms: Public domain W3C validator