MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnr Structured version   Visualization version   GIF version

Theorem xrltnr 13092
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 13089 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ltnr 11287 . . 3 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
3 pnfnre 11233 . . . . . . . . . 10 +∞ ∉ ℝ
43neli 3033 . . . . . . . . 9 ¬ +∞ ∈ ℝ
54intnan 486 . . . . . . . 8 ¬ (+∞ ∈ ℝ ∧ +∞ ∈ ℝ)
65intnanr 487 . . . . . . 7 ¬ ((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞)
7 pnfnemnf 11247 . . . . . . . . 9 +∞ ≠ -∞
87neii 2929 . . . . . . . 8 ¬ +∞ = -∞
98intnanr 487 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ = +∞)
106, 9pm3.2ni 880 . . . . . 6 ¬ (((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞))
114intnanr 487 . . . . . . 7 ¬ (+∞ ∈ ℝ ∧ +∞ = +∞)
124intnan 486 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ ∈ ℝ)
1311, 12pm3.2ni 880 . . . . . 6 ¬ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))
1410, 13pm3.2ni 880 . . . . 5 ¬ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))
15 pnfxr 11246 . . . . . 6 +∞ ∈ ℝ*
16 ltxr 13088 . . . . . 6 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))))
1715, 15, 16mp2an 692 . . . . 5 (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))))
1814, 17mtbir 323 . . . 4 ¬ +∞ < +∞
19 breq12 5120 . . . . 5 ((𝐴 = +∞ ∧ 𝐴 = +∞) → (𝐴 < 𝐴 ↔ +∞ < +∞))
2019anidms 566 . . . 4 (𝐴 = +∞ → (𝐴 < 𝐴 ↔ +∞ < +∞))
2118, 20mtbiri 327 . . 3 (𝐴 = +∞ → ¬ 𝐴 < 𝐴)
22 mnfnre 11235 . . . . . . . . . 10 -∞ ∉ ℝ
2322neli 3033 . . . . . . . . 9 ¬ -∞ ∈ ℝ
2423intnan 486 . . . . . . . 8 ¬ (-∞ ∈ ℝ ∧ -∞ ∈ ℝ)
2524intnanr 487 . . . . . . 7 ¬ ((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞)
267nesymi 2984 . . . . . . . 8 ¬ -∞ = +∞
2726intnan 486 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ = +∞)
2825, 27pm3.2ni 880 . . . . . 6 ¬ (((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞))
2923intnanr 487 . . . . . . 7 ¬ (-∞ ∈ ℝ ∧ -∞ = +∞)
3023intnan 486 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ ∈ ℝ)
3129, 30pm3.2ni 880 . . . . . 6 ¬ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))
3228, 31pm3.2ni 880 . . . . 5 ¬ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))
33 mnfxr 11249 . . . . . 6 -∞ ∈ ℝ*
34 ltxr 13088 . . . . . 6 ((-∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))))
3533, 33, 34mp2an 692 . . . . 5 (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))))
3632, 35mtbir 323 . . . 4 ¬ -∞ < -∞
37 breq12 5120 . . . . 5 ((𝐴 = -∞ ∧ 𝐴 = -∞) → (𝐴 < 𝐴 ↔ -∞ < -∞))
3837anidms 566 . . . 4 (𝐴 = -∞ → (𝐴 < 𝐴 ↔ -∞ < -∞))
3936, 38mtbiri 327 . . 3 (𝐴 = -∞ → ¬ 𝐴 < 𝐴)
402, 21, 393jaoi 1430 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ¬ 𝐴 < 𝐴)
411, 40sylbi 217 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109   class class class wbr 5115  cr 11085   < cltrr 11090  +∞cpnf 11223  -∞cmnf 11224  *cxr 11225   < clt 11226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-pre-lttri 11160  ax-pre-lttrn 11161
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231
This theorem is referenced by:  xrltnsym  13110  xrlttri  13112  nltpnft  13137  ngtmnft  13139  xrsupsslem  13280  xrinfmsslem  13281  xrub  13285  lbioo  13350  ubioo  13351  topnfbey  30405  lbioc  45484  icoub  45497  et-ltneverrefl  46842  iccpartnel  47394
  Copyright terms: Public domain W3C validator