![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltmnf | Structured version Visualization version GIF version |
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
nltmnf | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 11257 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
2 | 1 | neli 3049 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
3 | 2 | intnan 488 | . . . . 5 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) |
4 | 3 | intnanr 489 | . . . 4 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) |
5 | pnfnemnf 11269 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | nesymi 2999 | . . . . 5 ⊢ ¬ -∞ = +∞ |
7 | 6 | intnan 488 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ = +∞) |
8 | 4, 7 | pm3.2ni 880 | . . 3 ⊢ ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) |
9 | 6 | intnan 488 | . . . 4 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞) |
10 | 2 | intnan 488 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ) |
11 | 9, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 880 | . 2 ⊢ ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))) |
13 | mnfxr 11271 | . . 3 ⊢ -∞ ∈ ℝ* | |
14 | ltxr 13095 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | |
15 | 13, 14 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) |
16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 ℝcr 11109 <ℝ cltrr 11114 +∞cpnf 11245 -∞cmnf 11246 ℝ*cxr 11247 < clt 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 |
This theorem is referenced by: mnfle 13114 xrltnsym 13116 xrlttr 13119 qbtwnxr 13179 xltnegi 13195 xmullem2 13244 xmulasslem2 13261 xlemul1a 13267 xrsupexmnf 13284 xrsupsslem 13286 xrinfmsslem 13287 xrsup0 13302 reltxrnmnf 13321 infmremnf 13322 mnfnei 22725 blssioo 24311 deg1add 25621 icorempo 36232 relowlssretop 36244 supxrgere 44043 supxrgelem 44047 infxrunb2 44078 iccpartiltu 46090 |
Copyright terms: Public domain | W3C validator |