MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltmnf Structured version   Visualization version   GIF version

Theorem nltmnf 13169
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
nltmnf (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)

Proof of Theorem nltmnf
StepHypRef Expression
1 mnfnre 11302 . . . . . . 7 -∞ ∉ ℝ
21neli 3046 . . . . . 6 ¬ -∞ ∈ ℝ
32intnan 486 . . . . 5 ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ)
43intnanr 487 . . . 4 ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞)
5 pnfnemnf 11314 . . . . . 6 +∞ ≠ -∞
65nesymi 2996 . . . . 5 ¬ -∞ = +∞
76intnan 486 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ = +∞)
84, 7pm3.2ni 880 . . 3 ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞))
96intnan 486 . . . 4 ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞)
102intnan 486 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ)
119, 10pm3.2ni 880 . . 3 ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))
128, 11pm3.2ni 880 . 2 ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))
13 mnfxr 11316 . . 3 -∞ ∈ ℝ*
14 ltxr 13155 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1513, 14mpan2 691 . 2 (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1612, 15mtbiri 327 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106   class class class wbr 5148  cr 11152   < cltrr 11157  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298
This theorem is referenced by:  mnfle  13174  xrltnsym  13176  xrlttr  13179  qbtwnxr  13239  xltnegi  13255  xmullem2  13304  xmulasslem2  13321  xlemul1a  13327  xrsupexmnf  13344  xrsupsslem  13346  xrinfmsslem  13347  xrsup0  13362  reltxrnmnf  13381  infmremnf  13382  mnfnei  23245  blssioo  24831  deg1add  26157  icorempo  37334  relowlssretop  37346  supxrgere  45283  supxrgelem  45287  infxrunb2  45318  iccpartiltu  47347
  Copyright terms: Public domain W3C validator