![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltmnf | Structured version Visualization version GIF version |
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
nltmnf | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 11302 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
2 | 1 | neli 3046 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
3 | 2 | intnan 486 | . . . . 5 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) |
4 | 3 | intnanr 487 | . . . 4 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) |
5 | pnfnemnf 11314 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | nesymi 2996 | . . . . 5 ⊢ ¬ -∞ = +∞ |
7 | 6 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ = +∞) |
8 | 4, 7 | pm3.2ni 880 | . . 3 ⊢ ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) |
9 | 6 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞) |
10 | 2 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ) |
11 | 9, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 880 | . 2 ⊢ ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))) |
13 | mnfxr 11316 | . . 3 ⊢ -∞ ∈ ℝ* | |
14 | ltxr 13155 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | |
15 | 13, 14 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) |
16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 <ℝ cltrr 11157 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 |
This theorem is referenced by: mnfle 13174 xrltnsym 13176 xrlttr 13179 qbtwnxr 13239 xltnegi 13255 xmullem2 13304 xmulasslem2 13321 xlemul1a 13327 xrsupexmnf 13344 xrsupsslem 13346 xrinfmsslem 13347 xrsup0 13362 reltxrnmnf 13381 infmremnf 13382 mnfnei 23245 blssioo 24831 deg1add 26157 icorempo 37334 relowlssretop 37346 supxrgere 45283 supxrgelem 45287 infxrunb2 45318 iccpartiltu 47347 |
Copyright terms: Public domain | W3C validator |