Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nltmnf | Structured version Visualization version GIF version |
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
nltmnf | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 10764 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
2 | 1 | neli 3040 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
3 | 2 | intnan 490 | . . . . 5 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) |
4 | 3 | intnanr 491 | . . . 4 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) |
5 | pnfnemnf 10776 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | nesymi 2991 | . . . . 5 ⊢ ¬ -∞ = +∞ |
7 | 6 | intnan 490 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ = +∞) |
8 | 4, 7 | pm3.2ni 880 | . . 3 ⊢ ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) |
9 | 6 | intnan 490 | . . . 4 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞) |
10 | 2 | intnan 490 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ) |
11 | 9, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 880 | . 2 ⊢ ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))) |
13 | mnfxr 10778 | . . 3 ⊢ -∞ ∈ ℝ* | |
14 | ltxr 12595 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | |
15 | 13, 14 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) |
16 | 12, 15 | mtbiri 330 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ℝcr 10616 <ℝ cltrr 10621 +∞cpnf 10752 -∞cmnf 10753 ℝ*cxr 10754 < clt 10755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 |
This theorem is referenced by: mnfle 12614 xrltnsym 12615 xrlttr 12618 qbtwnxr 12678 xltnegi 12694 xmullem2 12743 xmulasslem2 12760 xlemul1a 12766 xrsupexmnf 12783 xrsupsslem 12785 xrinfmsslem 12786 xrsup0 12801 reltxrnmnf 12820 infmremnf 12821 mnfnei 21974 blssioo 23549 deg1add 24858 icorempo 35167 relowlssretop 35179 supxrgere 42432 supxrgelem 42436 infxrunb2 42467 iccpartiltu 44437 |
Copyright terms: Public domain | W3C validator |