|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nltmnf | Structured version Visualization version GIF version | ||
| Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| nltmnf | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mnfnre 11304 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 3048 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ | 
| 3 | 2 | intnan 486 | . . . . 5 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) | 
| 4 | 3 | intnanr 487 | . . . 4 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) | 
| 5 | pnfnemnf 11316 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 6 | 5 | nesymi 2998 | . . . . 5 ⊢ ¬ -∞ = +∞ | 
| 7 | 6 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ = +∞) | 
| 8 | 4, 7 | pm3.2ni 881 | . . 3 ⊢ ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) | 
| 9 | 6 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞) | 
| 10 | 2 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ) | 
| 11 | 9, 10 | pm3.2ni 881 | . . 3 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)) | 
| 12 | 8, 11 | pm3.2ni 881 | . 2 ⊢ ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))) | 
| 13 | mnfxr 11318 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 14 | ltxr 13157 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | |
| 15 | 13, 14 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | 
| 16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ℝcr 11154 <ℝ cltrr 11159 +∞cpnf 11292 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 | 
| This theorem is referenced by: mnfle 13177 xrltnsym 13179 xrlttr 13182 qbtwnxr 13242 xltnegi 13258 xmullem2 13307 xmulasslem2 13324 xlemul1a 13330 xrsupexmnf 13347 xrsupsslem 13349 xrinfmsslem 13350 xrsup0 13365 reltxrnmnf 13384 infmremnf 13385 mnfnei 23229 blssioo 24816 deg1add 26142 icorempo 37352 relowlssretop 37364 supxrgere 45344 supxrgelem 45348 infxrunb2 45379 iccpartiltu 47409 | 
| Copyright terms: Public domain | W3C validator |