MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltmnf Structured version   Visualization version   GIF version

Theorem nltmnf 13171
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
nltmnf (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)

Proof of Theorem nltmnf
StepHypRef Expression
1 mnfnre 11304 . . . . . . 7 -∞ ∉ ℝ
21neli 3048 . . . . . 6 ¬ -∞ ∈ ℝ
32intnan 486 . . . . 5 ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ)
43intnanr 487 . . . 4 ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞)
5 pnfnemnf 11316 . . . . . 6 +∞ ≠ -∞
65nesymi 2998 . . . . 5 ¬ -∞ = +∞
76intnan 486 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ = +∞)
84, 7pm3.2ni 881 . . 3 ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞))
96intnan 486 . . . 4 ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞)
102intnan 486 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ)
119, 10pm3.2ni 881 . . 3 ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))
128, 11pm3.2ni 881 . 2 ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))
13 mnfxr 11318 . . 3 -∞ ∈ ℝ*
14 ltxr 13157 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1513, 14mpan2 691 . 2 (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1612, 15mtbiri 327 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  cr 11154   < cltrr 11159  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300
This theorem is referenced by:  mnfle  13177  xrltnsym  13179  xrlttr  13182  qbtwnxr  13242  xltnegi  13258  xmullem2  13307  xmulasslem2  13324  xlemul1a  13330  xrsupexmnf  13347  xrsupsslem  13349  xrinfmsslem  13350  xrsup0  13365  reltxrnmnf  13384  infmremnf  13385  mnfnei  23229  blssioo  24816  deg1add  26142  icorempo  37352  relowlssretop  37364  supxrgere  45344  supxrgelem  45348  infxrunb2  45379  iccpartiltu  47409
  Copyright terms: Public domain W3C validator