| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltmnf | Structured version Visualization version GIF version | ||
| Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| nltmnf | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 11224 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 3032 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
| 3 | 2 | intnan 486 | . . . . 5 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) |
| 4 | 3 | intnanr 487 | . . . 4 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) |
| 5 | pnfnemnf 11236 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 6 | 5 | nesymi 2983 | . . . . 5 ⊢ ¬ -∞ = +∞ |
| 7 | 6 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ = +∞) |
| 8 | 4, 7 | pm3.2ni 880 | . . 3 ⊢ ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) |
| 9 | 6 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞) |
| 10 | 2 | intnan 486 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ) |
| 11 | 9, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)) |
| 12 | 8, 11 | pm3.2ni 880 | . 2 ⊢ ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))) |
| 13 | mnfxr 11238 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 14 | ltxr 13082 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | |
| 15 | 13, 14 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) |
| 16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 <ℝ cltrr 11079 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 |
| This theorem is referenced by: mnfle 13102 xrltnsym 13104 xrlttr 13107 qbtwnxr 13167 xltnegi 13183 xmullem2 13232 xmulasslem2 13249 xlemul1a 13255 xrsupexmnf 13272 xrsupsslem 13274 xrinfmsslem 13275 xrsup0 13290 reltxrnmnf 13310 infmremnf 13311 mnfnei 23115 blssioo 24690 deg1add 26015 icorempo 37346 relowlssretop 37358 supxrgere 45336 supxrgelem 45340 infxrunb2 45371 iccpartiltu 47427 |
| Copyright terms: Public domain | W3C validator |