MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnlt Structured version   Visualization version   GIF version

Theorem pnfnlt 13112
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 11259 . . . . . . 7 +∞ ∉ ℝ
21neli 3048 . . . . . 6 ¬ +∞ ∈ ℝ
32intnanr 488 . . . . 5 ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ)
43intnanr 488 . . . 4 ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴)
5 pnfnemnf 11273 . . . . . 6 +∞ ≠ -∞
65neii 2942 . . . . 5 ¬ +∞ = -∞
76intnanr 488 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 = +∞)
84, 7pm3.2ni 879 . . 3 ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞))
92intnanr 488 . . . 4 ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞)
106intnanr 488 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)
119, 10pm3.2ni 879 . . 3 ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))
128, 11pm3.2ni 879 . 2 ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))
13 pnfxr 11272 . . 3 +∞ ∈ ℝ*
14 ltxr 13099 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1513, 14mpan 688 . 2 (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1612, 15mtbiri 326 1 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106   class class class wbr 5148  cr 11111   < cltrr 11116  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251   < clt 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257
This theorem is referenced by:  pnfge  13114  xrltnsym  13120  xrlttr  13123  qbtwnxr  13183  xltnegi  13199  xmullem2  13248  xrinfmexpnf  13289  xrsupsslem  13290  xrinfmsslem  13291  xrub  13295  supxrpnf  13301  supxrunb1  13302  supxrunb2  13303  xrinf0  13321  lt6abl  19804  pnfnei  22944  metdstri  24587  esumpcvgval  33362  icorempo  36535  iooelexlt  36546  iccpartigtl  46390
  Copyright terms: Public domain W3C validator