![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnlt | Structured version Visualization version GIF version |
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11259 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3048 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | 2 | intnanr 488 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
4 | 3 | intnanr 488 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
5 | pnfnemnf 11273 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | neii 2942 | . . . . 5 ⊢ ¬ +∞ = -∞ |
7 | 6 | intnanr 488 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
8 | 4, 7 | pm3.2ni 879 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
9 | 2 | intnanr 488 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
10 | 6 | intnanr 488 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
11 | 9, 10 | pm3.2ni 879 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 879 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
13 | pnfxr 11272 | . . 3 ⊢ +∞ ∈ ℝ* | |
14 | ltxr 13099 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
15 | 13, 14 | mpan 688 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
16 | 12, 15 | mtbiri 326 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ℝcr 11111 <ℝ cltrr 11116 +∞cpnf 11249 -∞cmnf 11250 ℝ*cxr 11251 < clt 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 |
This theorem is referenced by: pnfge 13114 xrltnsym 13120 xrlttr 13123 qbtwnxr 13183 xltnegi 13199 xmullem2 13248 xrinfmexpnf 13289 xrsupsslem 13290 xrinfmsslem 13291 xrub 13295 supxrpnf 13301 supxrunb1 13302 supxrunb2 13303 xrinf0 13321 lt6abl 19804 pnfnei 22944 metdstri 24587 esumpcvgval 33362 icorempo 36535 iooelexlt 36546 iccpartigtl 46390 |
Copyright terms: Public domain | W3C validator |