| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnlt | Structured version Visualization version GIF version | ||
| Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11191 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
| 3 | 2 | intnanr 487 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
| 4 | 3 | intnanr 487 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
| 5 | pnfnemnf 11205 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 6 | 5 | neii 2927 | . . . . 5 ⊢ ¬ +∞ = -∞ |
| 7 | 6 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
| 8 | 4, 7 | pm3.2ni 880 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
| 9 | 2 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
| 10 | 6 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
| 11 | 9, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
| 12 | 8, 11 | pm3.2ni 880 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 13 | pnfxr 11204 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 14 | ltxr 13051 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 15 | 13, 14 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 <ℝ cltrr 11048 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 |
| This theorem is referenced by: pnfge 13066 xrltnsym 13073 xrlttr 13076 qbtwnxr 13136 xltnegi 13152 xmullem2 13201 xrinfmexpnf 13242 xrsupsslem 13243 xrinfmsslem 13244 xrub 13248 supxrpnf 13254 supxrunb1 13255 supxrunb2 13256 xrinf0 13275 lt6abl 19809 pnfnei 23140 metdstri 24773 esumpcvgval 34061 icorempo 37332 iooelexlt 37343 iccpartigtl 47417 |
| Copyright terms: Public domain | W3C validator |