| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnlt | Structured version Visualization version GIF version | ||
| Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11153 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3034 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
| 3 | 2 | intnanr 487 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
| 4 | 3 | intnanr 487 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
| 5 | pnfnemnf 11167 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 6 | 5 | neii 2930 | . . . . 5 ⊢ ¬ +∞ = -∞ |
| 7 | 6 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
| 8 | 4, 7 | pm3.2ni 880 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
| 9 | 2 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
| 10 | 6 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
| 11 | 9, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
| 12 | 8, 11 | pm3.2ni 880 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 13 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 14 | ltxr 13014 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 15 | 13, 14 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 <ℝ cltrr 11010 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: pnfge 13029 xrltnsym 13036 xrlttr 13039 qbtwnxr 13099 xltnegi 13115 xmullem2 13164 xrinfmexpnf 13205 xrsupsslem 13206 xrinfmsslem 13207 xrub 13211 supxrpnf 13217 supxrunb1 13218 supxrunb2 13219 xrinf0 13238 lt6abl 19807 pnfnei 23135 metdstri 24767 esumpcvgval 34091 icorempo 37395 iooelexlt 37406 iccpartigtl 47522 |
| Copyright terms: Public domain | W3C validator |