![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnlt | Structured version Visualization version GIF version |
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11262 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3047 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | 2 | intnanr 487 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
4 | 3 | intnanr 487 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
5 | pnfnemnf 11276 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | neii 2941 | . . . . 5 ⊢ ¬ +∞ = -∞ |
7 | 6 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
8 | 4, 7 | pm3.2ni 878 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
9 | 2 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
10 | 6 | intnanr 487 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
11 | 9, 10 | pm3.2ni 878 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 878 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
13 | pnfxr 11275 | . . 3 ⊢ +∞ ∈ ℝ* | |
14 | ltxr 13102 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
15 | 13, 14 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
16 | 12, 15 | mtbiri 327 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ℝcr 11115 <ℝ cltrr 11120 +∞cpnf 11252 -∞cmnf 11253 ℝ*cxr 11254 < clt 11255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 |
This theorem is referenced by: pnfge 13117 xrltnsym 13123 xrlttr 13126 qbtwnxr 13186 xltnegi 13202 xmullem2 13251 xrinfmexpnf 13292 xrsupsslem 13293 xrinfmsslem 13294 xrub 13298 supxrpnf 13304 supxrunb1 13305 supxrunb2 13306 xrinf0 13324 lt6abl 19811 pnfnei 23044 metdstri 24687 esumpcvgval 33541 icorempo 36698 iooelexlt 36709 iccpartigtl 46552 |
Copyright terms: Public domain | W3C validator |