![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnlt | Structured version Visualization version GIF version |
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
pnfnlt | ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10398 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3104 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | 2 | intnanr 483 | . . . . 5 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) |
4 | 3 | intnanr 483 | . . . 4 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) |
5 | pnfnemnf 10412 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
6 | 5 | neii 3001 | . . . . 5 ⊢ ¬ +∞ = -∞ |
7 | 6 | intnanr 483 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 = +∞) |
8 | 4, 7 | pm3.2ni 909 | . . 3 ⊢ ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) |
9 | 2 | intnanr 483 | . . . 4 ⊢ ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞) |
10 | 6 | intnanr 483 | . . . 4 ⊢ ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ) |
11 | 9, 10 | pm3.2ni 909 | . . 3 ⊢ ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)) |
12 | 8, 11 | pm3.2ni 909 | . 2 ⊢ ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
13 | pnfxr 10410 | . . 3 ⊢ +∞ ∈ ℝ* | |
14 | ltxr 12235 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
15 | 13, 14 | mpan 681 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ <ℝ 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
16 | 12, 15 | mtbiri 319 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 class class class wbr 4873 ℝcr 10251 <ℝ cltrr 10256 +∞cpnf 10388 -∞cmnf 10389 ℝ*cxr 10390 < clt 10391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 |
This theorem is referenced by: pnfge 12250 xrltnsym 12256 xrlttr 12259 qbtwnxr 12319 xltnegi 12335 xmullem2 12383 xrinfmexpnf 12424 xrsupsslem 12425 xrinfmsslem 12426 xrub 12430 supxrpnf 12436 supxrunb1 12437 supxrunb2 12438 xrinf0 12456 lt6abl 18649 pnfnei 21395 metdstri 23024 esumpcvgval 30674 icorempt2 33737 iooelexlt 33748 iccpartigtl 42240 |
Copyright terms: Public domain | W3C validator |