MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnlt Structured version   Visualization version   GIF version

Theorem pnfnlt 12910
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 11062 . . . . . . 7 +∞ ∉ ℝ
21neli 3049 . . . . . 6 ¬ +∞ ∈ ℝ
32intnanr 489 . . . . 5 ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ)
43intnanr 489 . . . 4 ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴)
5 pnfnemnf 11076 . . . . . 6 +∞ ≠ -∞
65neii 2943 . . . . 5 ¬ +∞ = -∞
76intnanr 489 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 = +∞)
84, 7pm3.2ni 879 . . 3 ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞))
92intnanr 489 . . . 4 ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞)
106intnanr 489 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)
119, 10pm3.2ni 879 . . 3 ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))
128, 11pm3.2ni 879 . 2 ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))
13 pnfxr 11075 . . 3 +∞ ∈ ℝ*
14 ltxr 12897 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1513, 14mpan 688 . 2 (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1612, 15mtbiri 327 1 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845   = wceq 1539  wcel 2104   class class class wbr 5081  cr 10916   < cltrr 10921  +∞cpnf 11052  -∞cmnf 11053  *cxr 11054   < clt 11055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-xp 5606  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060
This theorem is referenced by:  pnfge  12912  xrltnsym  12917  xrlttr  12920  qbtwnxr  12980  xltnegi  12996  xmullem2  13045  xrinfmexpnf  13086  xrsupsslem  13087  xrinfmsslem  13088  xrub  13092  supxrpnf  13098  supxrunb1  13099  supxrunb2  13100  xrinf0  13118  lt6abl  19541  pnfnei  22416  metdstri  24059  esumpcvgval  32091  icorempo  35566  iooelexlt  35577  iccpartigtl  44933
  Copyright terms: Public domain W3C validator