Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version |
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
recgt0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
recgt0ii | ⊢ 0 < (1 / 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10647 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | recni 10707 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
4 | ax-1ne0 10658 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
6 | 2, 5 | gt0ne0ii 11228 | . . . . 5 ⊢ 𝐴 ≠ 0 |
7 | 1, 3, 4, 6 | divne0i 11440 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
8 | 7 | nesymi 3009 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
9 | 0lt1 11214 | . . . . 5 ⊢ 0 < 1 | |
10 | 0re 10695 | . . . . . 6 ⊢ 0 ∈ ℝ | |
11 | 1re 10693 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 10, 11 | ltnsymi 10811 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
14 | 2, 6 | rereccli 11457 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
15 | 14 | renegcli 10999 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
16 | 15, 2 | mulgt0i 10824 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
17 | 5, 16 | mpan2 690 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
18 | 14 | recni 10707 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
19 | 18, 3 | mulneg1i 11138 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
20 | 3, 6 | recidi 11423 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
21 | 3, 18, 20 | mulcomli 10702 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
22 | 21 | negeqi 10931 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
23 | 19, 22 | eqtri 2782 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
24 | 17, 23 | breqtrdi 5078 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
25 | lt0neg1 11198 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
27 | lt0neg1 11198 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
29 | 24, 26, 28 | 3imtr4i 295 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
30 | 13, 29 | mto 200 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
31 | 8, 30 | pm3.2ni 878 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
32 | axlttri 10764 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
33 | 10, 14, 32 | mp2an 691 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
34 | 31, 33 | mpbir 234 | 1 ⊢ 0 < (1 / 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∨ wo 844 = wceq 1539 ∈ wcel 2112 class class class wbr 5037 (class class class)co 7157 ℝcr 10588 0cc0 10589 1c1 10590 · cmul 10594 < clt 10727 -cneg 10923 / cdiv 11349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-po 5448 df-so 5449 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 |
This theorem is referenced by: halfgt0 11904 0.999... 15299 sincos2sgn 15609 rpnnen2lem3 15631 rpnnen2lem4 15632 rpnnen2lem9 15637 pcoass 23740 log2tlbnd 25645 iccioo01 35057 stoweidlem34 43088 stoweidlem59 43113 |
Copyright terms: Public domain | W3C validator |