| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
| recgt0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| recgt0ii | ⊢ 0 < (1 / 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11192 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | recni 11254 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 4 | ax-1ne0 11203 | . . . . 5 ⊢ 1 ≠ 0 | |
| 5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
| 6 | 2, 5 | gt0ne0ii 11778 | . . . . 5 ⊢ 𝐴 ≠ 0 |
| 7 | 1, 3, 4, 6 | divne0i 11994 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
| 8 | 7 | nesymi 2990 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
| 9 | 0lt1 11764 | . . . . 5 ⊢ 0 < 1 | |
| 10 | 0re 11242 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | 1re 11240 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 10, 11 | ltnsymi 11359 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
| 14 | 2, 6 | rereccli 12011 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
| 15 | 14 | renegcli 11549 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
| 16 | 15, 2 | mulgt0i 11372 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 17 | 5, 16 | mpan2 691 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 18 | 14 | recni 11254 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
| 19 | 18, 3 | mulneg1i 11688 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
| 20 | 3, 6 | recidi 11977 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
| 21 | 3, 18, 20 | mulcomli 11249 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
| 22 | 21 | negeqi 11480 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
| 23 | 19, 22 | eqtri 2759 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
| 24 | 17, 23 | breqtrdi 5165 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
| 25 | lt0neg1 11748 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
| 26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
| 27 | lt0neg1 11748 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
| 28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
| 29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
| 30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
| 31 | 8, 30 | pm3.2ni 880 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
| 32 | axlttri 11311 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
| 33 | 10, 14, 32 | mp2an 692 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
| 34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 · cmul 11139 < clt 11274 -cneg 11472 / cdiv 11899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 |
| This theorem is referenced by: halfgt0 12461 0.999... 15902 sincos2sgn 16217 rpnnen2lem3 16239 rpnnen2lem4 16240 rpnnen2lem9 16245 pcoass 24980 log2tlbnd 26912 iccioo01 37350 stoweidlem34 46030 stoweidlem59 46055 |
| Copyright terms: Public domain | W3C validator |