Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version |
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
recgt0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
recgt0ii | ⊢ 0 < (1 / 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | recni 10989 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
4 | ax-1ne0 10940 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
6 | 2, 5 | gt0ne0ii 11511 | . . . . 5 ⊢ 𝐴 ≠ 0 |
7 | 1, 3, 4, 6 | divne0i 11723 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
8 | 7 | nesymi 3001 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
9 | 0lt1 11497 | . . . . 5 ⊢ 0 < 1 | |
10 | 0re 10977 | . . . . . 6 ⊢ 0 ∈ ℝ | |
11 | 1re 10975 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 10, 11 | ltnsymi 11094 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
14 | 2, 6 | rereccli 11740 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
15 | 14 | renegcli 11282 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
16 | 15, 2 | mulgt0i 11107 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
17 | 5, 16 | mpan2 688 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
18 | 14 | recni 10989 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
19 | 18, 3 | mulneg1i 11421 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
20 | 3, 6 | recidi 11706 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
21 | 3, 18, 20 | mulcomli 10984 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
22 | 21 | negeqi 11214 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
23 | 19, 22 | eqtri 2766 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
24 | 17, 23 | breqtrdi 5115 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
25 | lt0neg1 11481 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
27 | lt0neg1 11481 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
30 | 13, 29 | mto 196 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
31 | 8, 30 | pm3.2ni 878 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
32 | axlttri 11046 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
33 | 10, 14, 32 | mp2an 689 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
34 | 31, 33 | mpbir 230 | 1 ⊢ 0 < (1 / 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 -cneg 11206 / cdiv 11632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 |
This theorem is referenced by: halfgt0 12189 0.999... 15593 sincos2sgn 15903 rpnnen2lem3 15925 rpnnen2lem4 15926 rpnnen2lem9 15931 pcoass 24187 log2tlbnd 26095 iccioo01 35498 stoweidlem34 43575 stoweidlem59 43600 |
Copyright terms: Public domain | W3C validator |