MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0ii Structured version   Visualization version   GIF version

Theorem recgt0ii 12172
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
recgt0i.2 0 < 𝐴
Assertion
Ref Expression
recgt0ii 0 < (1 / 𝐴)

Proof of Theorem recgt0ii
StepHypRef Expression
1 ax-1cn 11211 . . . . 5 1 ∈ ℂ
2 ltplus1.1 . . . . . 6 𝐴 ∈ ℝ
32recni 11273 . . . . 5 𝐴 ∈ ℂ
4 ax-1ne0 11222 . . . . 5 1 ≠ 0
5 recgt0i.2 . . . . . 6 0 < 𝐴
62, 5gt0ne0ii 11797 . . . . 5 𝐴 ≠ 0
71, 3, 4, 6divne0i 12013 . . . 4 (1 / 𝐴) ≠ 0
87nesymi 2996 . . 3 ¬ 0 = (1 / 𝐴)
9 0lt1 11783 . . . . 5 0 < 1
10 0re 11261 . . . . . 6 0 ∈ ℝ
11 1re 11259 . . . . . 6 1 ∈ ℝ
1210, 11ltnsymi 11378 . . . . 5 (0 < 1 → ¬ 1 < 0)
139, 12ax-mp 5 . . . 4 ¬ 1 < 0
142, 6rereccli 12030 . . . . . . . . 9 (1 / 𝐴) ∈ ℝ
1514renegcli 11568 . . . . . . . 8 -(1 / 𝐴) ∈ ℝ
1615, 2mulgt0i 11391 . . . . . . 7 ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
175, 16mpan2 691 . . . . . 6 (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
1814recni 11273 . . . . . . . 8 (1 / 𝐴) ∈ ℂ
1918, 3mulneg1i 11707 . . . . . . 7 (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)
203, 6recidi 11996 . . . . . . . . 9 (𝐴 · (1 / 𝐴)) = 1
213, 18, 20mulcomli 11268 . . . . . . . 8 ((1 / 𝐴) · 𝐴) = 1
2221negeqi 11499 . . . . . . 7 -((1 / 𝐴) · 𝐴) = -1
2319, 22eqtri 2763 . . . . . 6 (-(1 / 𝐴) · 𝐴) = -1
2417, 23breqtrdi 5189 . . . . 5 (0 < -(1 / 𝐴) → 0 < -1)
25 lt0neg1 11767 . . . . . 6 ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
2614, 25ax-mp 5 . . . . 5 ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))
27 lt0neg1 11767 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
2811, 27ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
2924, 26, 283imtr4i 292 . . . 4 ((1 / 𝐴) < 0 → 1 < 0)
3013, 29mto 197 . . 3 ¬ (1 / 𝐴) < 0
318, 30pm3.2ni 880 . 2 ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)
32 axlttri 11330 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)))
3310, 14, 32mp2an 692 . 2 (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))
3431, 33mpbir 231 1 0 < (1 / 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  -cneg 11491   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by:  halfgt0  12480  0.999...  15914  sincos2sgn  16227  rpnnen2lem3  16249  rpnnen2lem4  16250  rpnnen2lem9  16255  pcoass  25071  log2tlbnd  27003  iccioo01  37310  stoweidlem34  45990  stoweidlem59  46015
  Copyright terms: Public domain W3C validator