![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version |
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
recgt0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
recgt0ii | ⊢ 0 < (1 / 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11163 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | recni 11224 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
4 | ax-1ne0 11174 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
6 | 2, 5 | gt0ne0ii 11746 | . . . . 5 ⊢ 𝐴 ≠ 0 |
7 | 1, 3, 4, 6 | divne0i 11958 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
8 | 7 | nesymi 2990 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
9 | 0lt1 11732 | . . . . 5 ⊢ 0 < 1 | |
10 | 0re 11212 | . . . . . 6 ⊢ 0 ∈ ℝ | |
11 | 1re 11210 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 10, 11 | ltnsymi 11329 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
14 | 2, 6 | rereccli 11975 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
15 | 14 | renegcli 11517 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
16 | 15, 2 | mulgt0i 11342 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
17 | 5, 16 | mpan2 688 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
18 | 14 | recni 11224 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
19 | 18, 3 | mulneg1i 11656 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
20 | 3, 6 | recidi 11941 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
21 | 3, 18, 20 | mulcomli 11219 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
22 | 21 | negeqi 11449 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
23 | 19, 22 | eqtri 2752 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
24 | 17, 23 | breqtrdi 5179 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
25 | lt0neg1 11716 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
27 | lt0neg1 11716 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
30 | 13, 29 | mto 196 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
31 | 8, 30 | pm3.2ni 877 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
32 | axlttri 11281 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
33 | 10, 14, 32 | mp2an 689 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
34 | 31, 33 | mpbir 230 | 1 ⊢ 0 < (1 / 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 ℝcr 11104 0cc0 11105 1c1 11106 · cmul 11110 < clt 11244 -cneg 11441 / cdiv 11867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 |
This theorem is referenced by: halfgt0 12424 0.999... 15823 sincos2sgn 16133 rpnnen2lem3 16155 rpnnen2lem4 16156 rpnnen2lem9 16161 pcoass 24861 log2tlbnd 26781 iccioo01 36664 stoweidlem34 45201 stoweidlem59 45226 |
Copyright terms: Public domain | W3C validator |