MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0ii Structured version   Visualization version   GIF version

Theorem recgt0ii 12201
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
recgt0i.2 0 < 𝐴
Assertion
Ref Expression
recgt0ii 0 < (1 / 𝐴)

Proof of Theorem recgt0ii
StepHypRef Expression
1 ax-1cn 11242 . . . . 5 1 ∈ ℂ
2 ltplus1.1 . . . . . 6 𝐴 ∈ ℝ
32recni 11304 . . . . 5 𝐴 ∈ ℂ
4 ax-1ne0 11253 . . . . 5 1 ≠ 0
5 recgt0i.2 . . . . . 6 0 < 𝐴
62, 5gt0ne0ii 11826 . . . . 5 𝐴 ≠ 0
71, 3, 4, 6divne0i 12042 . . . 4 (1 / 𝐴) ≠ 0
87nesymi 3004 . . 3 ¬ 0 = (1 / 𝐴)
9 0lt1 11812 . . . . 5 0 < 1
10 0re 11292 . . . . . 6 0 ∈ ℝ
11 1re 11290 . . . . . 6 1 ∈ ℝ
1210, 11ltnsymi 11409 . . . . 5 (0 < 1 → ¬ 1 < 0)
139, 12ax-mp 5 . . . 4 ¬ 1 < 0
142, 6rereccli 12059 . . . . . . . . 9 (1 / 𝐴) ∈ ℝ
1514renegcli 11597 . . . . . . . 8 -(1 / 𝐴) ∈ ℝ
1615, 2mulgt0i 11422 . . . . . . 7 ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
175, 16mpan2 690 . . . . . 6 (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
1814recni 11304 . . . . . . . 8 (1 / 𝐴) ∈ ℂ
1918, 3mulneg1i 11736 . . . . . . 7 (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)
203, 6recidi 12025 . . . . . . . . 9 (𝐴 · (1 / 𝐴)) = 1
213, 18, 20mulcomli 11299 . . . . . . . 8 ((1 / 𝐴) · 𝐴) = 1
2221negeqi 11529 . . . . . . 7 -((1 / 𝐴) · 𝐴) = -1
2319, 22eqtri 2768 . . . . . 6 (-(1 / 𝐴) · 𝐴) = -1
2417, 23breqtrdi 5207 . . . . 5 (0 < -(1 / 𝐴) → 0 < -1)
25 lt0neg1 11796 . . . . . 6 ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
2614, 25ax-mp 5 . . . . 5 ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))
27 lt0neg1 11796 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
2811, 27ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
2924, 26, 283imtr4i 292 . . . 4 ((1 / 𝐴) < 0 → 1 < 0)
3013, 29mto 197 . . 3 ¬ (1 / 𝐴) < 0
318, 30pm3.2ni 879 . 2 ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)
32 axlttri 11361 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)))
3310, 14, 32mp2an 691 . 2 (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))
3431, 33mpbir 231 1 0 < (1 / 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  -cneg 11521   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by:  halfgt0  12509  0.999...  15929  sincos2sgn  16242  rpnnen2lem3  16264  rpnnen2lem4  16265  rpnnen2lem9  16270  pcoass  25076  log2tlbnd  27006  iccioo01  37293  stoweidlem34  45955  stoweidlem59  45980
  Copyright terms: Public domain W3C validator