| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
| recgt0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| recgt0ii | ⊢ 0 < (1 / 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | recni 11188 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 4 | ax-1ne0 11137 | . . . . 5 ⊢ 1 ≠ 0 | |
| 5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
| 6 | 2, 5 | gt0ne0ii 11714 | . . . . 5 ⊢ 𝐴 ≠ 0 |
| 7 | 1, 3, 4, 6 | divne0i 11930 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
| 8 | 7 | nesymi 2982 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
| 9 | 0lt1 11700 | . . . . 5 ⊢ 0 < 1 | |
| 10 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | 1re 11174 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 10, 11 | ltnsymi 11293 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
| 14 | 2, 6 | rereccli 11947 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
| 15 | 14 | renegcli 11483 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
| 16 | 15, 2 | mulgt0i 11306 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 17 | 5, 16 | mpan2 691 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 18 | 14 | recni 11188 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
| 19 | 18, 3 | mulneg1i 11624 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
| 20 | 3, 6 | recidi 11913 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
| 21 | 3, 18, 20 | mulcomli 11183 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
| 22 | 21 | negeqi 11414 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
| 23 | 19, 22 | eqtri 2752 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
| 24 | 17, 23 | breqtrdi 5148 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
| 25 | lt0neg1 11684 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
| 26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
| 27 | lt0neg1 11684 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
| 28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
| 29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
| 30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
| 31 | 8, 30 | pm3.2ni 880 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
| 32 | axlttri 11245 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
| 33 | 10, 14, 32 | mp2an 692 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
| 34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 -cneg 11406 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 |
| This theorem is referenced by: halfgt0 12397 0.999... 15847 sincos2sgn 16162 rpnnen2lem3 16184 rpnnen2lem4 16185 rpnnen2lem9 16190 pcoass 24924 log2tlbnd 26855 iccioo01 37315 stoweidlem34 46032 stoweidlem59 46057 |
| Copyright terms: Public domain | W3C validator |