|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) | 
| Ref | Expression | 
|---|---|
| ltplus1.1 | ⊢ 𝐴 ∈ ℝ | 
| recgt0i.2 | ⊢ 0 < 𝐴 | 
| Ref | Expression | 
|---|---|
| recgt0ii | ⊢ 0 < (1 / 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1cn 11214 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | recni 11276 | . . . . 5 ⊢ 𝐴 ∈ ℂ | 
| 4 | ax-1ne0 11225 | . . . . 5 ⊢ 1 ≠ 0 | |
| 5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
| 6 | 2, 5 | gt0ne0ii 11800 | . . . . 5 ⊢ 𝐴 ≠ 0 | 
| 7 | 1, 3, 4, 6 | divne0i 12016 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 | 
| 8 | 7 | nesymi 2997 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) | 
| 9 | 0lt1 11786 | . . . . 5 ⊢ 0 < 1 | |
| 10 | 0re 11264 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | 1re 11262 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 10, 11 | ltnsymi 11381 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) | 
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 | 
| 14 | 2, 6 | rereccli 12033 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ | 
| 15 | 14 | renegcli 11571 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ | 
| 16 | 15, 2 | mulgt0i 11394 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) | 
| 17 | 5, 16 | mpan2 691 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) | 
| 18 | 14 | recni 11276 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ | 
| 19 | 18, 3 | mulneg1i 11710 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) | 
| 20 | 3, 6 | recidi 11999 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 | 
| 21 | 3, 18, 20 | mulcomli 11271 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 | 
| 22 | 21 | negeqi 11502 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 | 
| 23 | 19, 22 | eqtri 2764 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 | 
| 24 | 17, 23 | breqtrdi 5183 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) | 
| 25 | lt0neg1 11770 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
| 26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) | 
| 27 | lt0neg1 11770 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
| 28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) | 
| 29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) | 
| 30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 | 
| 31 | 8, 30 | pm3.2ni 880 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) | 
| 32 | axlttri 11333 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
| 33 | 10, 14, 32 | mp2an 692 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) | 
| 34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 0cc0 11156 1c1 11157 · cmul 11161 < clt 11296 -cneg 11494 / cdiv 11921 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 | 
| This theorem is referenced by: halfgt0 12483 0.999... 15918 sincos2sgn 16231 rpnnen2lem3 16253 rpnnen2lem4 16254 rpnnen2lem9 16259 pcoass 25058 log2tlbnd 26989 iccioo01 37329 stoweidlem34 46054 stoweidlem59 46079 | 
| Copyright terms: Public domain | W3C validator |