| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
| recgt0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| recgt0ii | ⊢ 0 < (1 / 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | recni 11164 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 4 | ax-1ne0 11113 | . . . . 5 ⊢ 1 ≠ 0 | |
| 5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
| 6 | 2, 5 | gt0ne0ii 11690 | . . . . 5 ⊢ 𝐴 ≠ 0 |
| 7 | 1, 3, 4, 6 | divne0i 11906 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
| 8 | 7 | nesymi 2982 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
| 9 | 0lt1 11676 | . . . . 5 ⊢ 0 < 1 | |
| 10 | 0re 11152 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | 1re 11150 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 10, 11 | ltnsymi 11269 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
| 14 | 2, 6 | rereccli 11923 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
| 15 | 14 | renegcli 11459 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
| 16 | 15, 2 | mulgt0i 11282 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 17 | 5, 16 | mpan2 691 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 18 | 14 | recni 11164 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
| 19 | 18, 3 | mulneg1i 11600 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
| 20 | 3, 6 | recidi 11889 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
| 21 | 3, 18, 20 | mulcomli 11159 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
| 22 | 21 | negeqi 11390 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
| 23 | 19, 22 | eqtri 2752 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
| 24 | 17, 23 | breqtrdi 5143 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
| 25 | lt0neg1 11660 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
| 26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
| 27 | lt0neg1 11660 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
| 28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
| 29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
| 30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
| 31 | 8, 30 | pm3.2ni 880 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
| 32 | axlttri 11221 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
| 33 | 10, 14, 32 | mp2an 692 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
| 34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 · cmul 11049 < clt 11184 -cneg 11382 / cdiv 11811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 |
| This theorem is referenced by: halfgt0 12373 0.999... 15823 sincos2sgn 16138 rpnnen2lem3 16160 rpnnen2lem4 16161 rpnnen2lem9 16166 pcoass 24900 log2tlbnd 26831 iccioo01 37288 stoweidlem34 46005 stoweidlem59 46030 |
| Copyright terms: Public domain | W3C validator |