MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0ii Structured version   Visualization version   GIF version

Theorem recgt0ii 12153
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
recgt0i.2 0 < 𝐴
Assertion
Ref Expression
recgt0ii 0 < (1 / 𝐴)

Proof of Theorem recgt0ii
StepHypRef Expression
1 ax-1cn 11192 . . . . 5 1 ∈ ℂ
2 ltplus1.1 . . . . . 6 𝐴 ∈ ℝ
32recni 11254 . . . . 5 𝐴 ∈ ℂ
4 ax-1ne0 11203 . . . . 5 1 ≠ 0
5 recgt0i.2 . . . . . 6 0 < 𝐴
62, 5gt0ne0ii 11778 . . . . 5 𝐴 ≠ 0
71, 3, 4, 6divne0i 11994 . . . 4 (1 / 𝐴) ≠ 0
87nesymi 2990 . . 3 ¬ 0 = (1 / 𝐴)
9 0lt1 11764 . . . . 5 0 < 1
10 0re 11242 . . . . . 6 0 ∈ ℝ
11 1re 11240 . . . . . 6 1 ∈ ℝ
1210, 11ltnsymi 11359 . . . . 5 (0 < 1 → ¬ 1 < 0)
139, 12ax-mp 5 . . . 4 ¬ 1 < 0
142, 6rereccli 12011 . . . . . . . . 9 (1 / 𝐴) ∈ ℝ
1514renegcli 11549 . . . . . . . 8 -(1 / 𝐴) ∈ ℝ
1615, 2mulgt0i 11372 . . . . . . 7 ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
175, 16mpan2 691 . . . . . 6 (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
1814recni 11254 . . . . . . . 8 (1 / 𝐴) ∈ ℂ
1918, 3mulneg1i 11688 . . . . . . 7 (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)
203, 6recidi 11977 . . . . . . . . 9 (𝐴 · (1 / 𝐴)) = 1
213, 18, 20mulcomli 11249 . . . . . . . 8 ((1 / 𝐴) · 𝐴) = 1
2221negeqi 11480 . . . . . . 7 -((1 / 𝐴) · 𝐴) = -1
2319, 22eqtri 2759 . . . . . 6 (-(1 / 𝐴) · 𝐴) = -1
2417, 23breqtrdi 5165 . . . . 5 (0 < -(1 / 𝐴) → 0 < -1)
25 lt0neg1 11748 . . . . . 6 ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
2614, 25ax-mp 5 . . . . 5 ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))
27 lt0neg1 11748 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
2811, 27ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
2924, 26, 283imtr4i 292 . . . 4 ((1 / 𝐴) < 0 → 1 < 0)
3013, 29mto 197 . . 3 ¬ (1 / 𝐴) < 0
318, 30pm3.2ni 880 . 2 ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)
32 axlttri 11311 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)))
3310, 14, 32mp2an 692 . 2 (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))
3431, 33mpbir 231 1 0 < (1 / 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  -cneg 11472   / cdiv 11899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900
This theorem is referenced by:  halfgt0  12461  0.999...  15902  sincos2sgn  16217  rpnnen2lem3  16239  rpnnen2lem4  16240  rpnnen2lem9  16245  pcoass  24980  log2tlbnd  26912  iccioo01  37350  stoweidlem34  46030  stoweidlem59  46055
  Copyright terms: Public domain W3C validator