![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version |
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
recgt0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
recgt0ii | ⊢ 0 < (1 / 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | recni 11304 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
4 | ax-1ne0 11253 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
6 | 2, 5 | gt0ne0ii 11826 | . . . . 5 ⊢ 𝐴 ≠ 0 |
7 | 1, 3, 4, 6 | divne0i 12042 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
8 | 7 | nesymi 3004 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
9 | 0lt1 11812 | . . . . 5 ⊢ 0 < 1 | |
10 | 0re 11292 | . . . . . 6 ⊢ 0 ∈ ℝ | |
11 | 1re 11290 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 10, 11 | ltnsymi 11409 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
14 | 2, 6 | rereccli 12059 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
15 | 14 | renegcli 11597 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
16 | 15, 2 | mulgt0i 11422 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
17 | 5, 16 | mpan2 690 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
18 | 14 | recni 11304 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
19 | 18, 3 | mulneg1i 11736 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
20 | 3, 6 | recidi 12025 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
21 | 3, 18, 20 | mulcomli 11299 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
22 | 21 | negeqi 11529 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
23 | 19, 22 | eqtri 2768 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
24 | 17, 23 | breqtrdi 5207 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
25 | lt0neg1 11796 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
27 | lt0neg1 11796 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
31 | 8, 30 | pm3.2ni 879 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
32 | axlttri 11361 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
33 | 10, 14, 32 | mp2an 691 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 < clt 11324 -cneg 11521 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 |
This theorem is referenced by: halfgt0 12509 0.999... 15929 sincos2sgn 16242 rpnnen2lem3 16264 rpnnen2lem4 16265 rpnnen2lem9 16270 pcoass 25076 log2tlbnd 27006 iccioo01 37293 stoweidlem34 45955 stoweidlem59 45980 |
Copyright terms: Public domain | W3C validator |