![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version |
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
recgt0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
recgt0ii | ⊢ 0 < (1 / 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11211 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | recni 11273 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
4 | ax-1ne0 11222 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
6 | 2, 5 | gt0ne0ii 11797 | . . . . 5 ⊢ 𝐴 ≠ 0 |
7 | 1, 3, 4, 6 | divne0i 12013 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
8 | 7 | nesymi 2996 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
9 | 0lt1 11783 | . . . . 5 ⊢ 0 < 1 | |
10 | 0re 11261 | . . . . . 6 ⊢ 0 ∈ ℝ | |
11 | 1re 11259 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 10, 11 | ltnsymi 11378 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
14 | 2, 6 | rereccli 12030 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
15 | 14 | renegcli 11568 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
16 | 15, 2 | mulgt0i 11391 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
17 | 5, 16 | mpan2 691 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
18 | 14 | recni 11273 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
19 | 18, 3 | mulneg1i 11707 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
20 | 3, 6 | recidi 11996 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
21 | 3, 18, 20 | mulcomli 11268 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
22 | 21 | negeqi 11499 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
23 | 19, 22 | eqtri 2763 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
24 | 17, 23 | breqtrdi 5189 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
25 | lt0neg1 11767 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
27 | lt0neg1 11767 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
31 | 8, 30 | pm3.2ni 880 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
32 | axlttri 11330 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
33 | 10, 14, 32 | mp2an 692 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 -cneg 11491 / cdiv 11918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: halfgt0 12480 0.999... 15914 sincos2sgn 16227 rpnnen2lem3 16249 rpnnen2lem4 16250 rpnnen2lem9 16255 pcoass 25071 log2tlbnd 27003 iccioo01 37310 stoweidlem34 45990 stoweidlem59 46015 |
Copyright terms: Public domain | W3C validator |