MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0ii Structured version   Visualization version   GIF version

Theorem recgt0ii 12175
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
recgt0i.2 0 < 𝐴
Assertion
Ref Expression
recgt0ii 0 < (1 / 𝐴)

Proof of Theorem recgt0ii
StepHypRef Expression
1 ax-1cn 11214 . . . . 5 1 ∈ ℂ
2 ltplus1.1 . . . . . 6 𝐴 ∈ ℝ
32recni 11276 . . . . 5 𝐴 ∈ ℂ
4 ax-1ne0 11225 . . . . 5 1 ≠ 0
5 recgt0i.2 . . . . . 6 0 < 𝐴
62, 5gt0ne0ii 11800 . . . . 5 𝐴 ≠ 0
71, 3, 4, 6divne0i 12016 . . . 4 (1 / 𝐴) ≠ 0
87nesymi 2997 . . 3 ¬ 0 = (1 / 𝐴)
9 0lt1 11786 . . . . 5 0 < 1
10 0re 11264 . . . . . 6 0 ∈ ℝ
11 1re 11262 . . . . . 6 1 ∈ ℝ
1210, 11ltnsymi 11381 . . . . 5 (0 < 1 → ¬ 1 < 0)
139, 12ax-mp 5 . . . 4 ¬ 1 < 0
142, 6rereccli 12033 . . . . . . . . 9 (1 / 𝐴) ∈ ℝ
1514renegcli 11571 . . . . . . . 8 -(1 / 𝐴) ∈ ℝ
1615, 2mulgt0i 11394 . . . . . . 7 ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
175, 16mpan2 691 . . . . . 6 (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴))
1814recni 11276 . . . . . . . 8 (1 / 𝐴) ∈ ℂ
1918, 3mulneg1i 11710 . . . . . . 7 (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)
203, 6recidi 11999 . . . . . . . . 9 (𝐴 · (1 / 𝐴)) = 1
213, 18, 20mulcomli 11271 . . . . . . . 8 ((1 / 𝐴) · 𝐴) = 1
2221negeqi 11502 . . . . . . 7 -((1 / 𝐴) · 𝐴) = -1
2319, 22eqtri 2764 . . . . . 6 (-(1 / 𝐴) · 𝐴) = -1
2417, 23breqtrdi 5183 . . . . 5 (0 < -(1 / 𝐴) → 0 < -1)
25 lt0neg1 11770 . . . . . 6 ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
2614, 25ax-mp 5 . . . . 5 ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))
27 lt0neg1 11770 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
2811, 27ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
2924, 26, 283imtr4i 292 . . . 4 ((1 / 𝐴) < 0 → 1 < 0)
3013, 29mto 197 . . 3 ¬ (1 / 𝐴) < 0
318, 30pm3.2ni 880 . 2 ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)
32 axlttri 11333 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)))
3310, 14, 32mp2an 692 . 2 (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))
3431, 33mpbir 231 1 0 < (1 / 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1539  wcel 2107   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   · cmul 11161   < clt 11296  -cneg 11494   / cdiv 11921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922
This theorem is referenced by:  halfgt0  12483  0.999...  15918  sincos2sgn  16231  rpnnen2lem3  16253  rpnnen2lem4  16254  rpnnen2lem9  16259  pcoass  25058  log2tlbnd  26989  iccioo01  37329  stoweidlem34  46054  stoweidlem59  46079
  Copyright terms: Public domain W3C validator