| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recgt0ii | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
| recgt0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| recgt0ii | ⊢ 0 < (1 / 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11075 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | ltplus1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | recni 11137 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 4 | ax-1ne0 11086 | . . . . 5 ⊢ 1 ≠ 0 | |
| 5 | recgt0i.2 | . . . . . 6 ⊢ 0 < 𝐴 | |
| 6 | 2, 5 | gt0ne0ii 11664 | . . . . 5 ⊢ 𝐴 ≠ 0 |
| 7 | 1, 3, 4, 6 | divne0i 11880 | . . . 4 ⊢ (1 / 𝐴) ≠ 0 |
| 8 | 7 | nesymi 2986 | . . 3 ⊢ ¬ 0 = (1 / 𝐴) |
| 9 | 0lt1 11650 | . . . . 5 ⊢ 0 < 1 | |
| 10 | 0re 11125 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | 1re 11123 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 10, 11 | ltnsymi 11243 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
| 14 | 2, 6 | rereccli 11897 | . . . . . . . . 9 ⊢ (1 / 𝐴) ∈ ℝ |
| 15 | 14 | renegcli 11433 | . . . . . . . 8 ⊢ -(1 / 𝐴) ∈ ℝ |
| 16 | 15, 2 | mulgt0i 11256 | . . . . . . 7 ⊢ ((0 < -(1 / 𝐴) ∧ 0 < 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 17 | 5, 16 | mpan2 691 | . . . . . 6 ⊢ (0 < -(1 / 𝐴) → 0 < (-(1 / 𝐴) · 𝐴)) |
| 18 | 14 | recni 11137 | . . . . . . . 8 ⊢ (1 / 𝐴) ∈ ℂ |
| 19 | 18, 3 | mulneg1i 11574 | . . . . . . 7 ⊢ (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴) |
| 20 | 3, 6 | recidi 11863 | . . . . . . . . 9 ⊢ (𝐴 · (1 / 𝐴)) = 1 |
| 21 | 3, 18, 20 | mulcomli 11132 | . . . . . . . 8 ⊢ ((1 / 𝐴) · 𝐴) = 1 |
| 22 | 21 | negeqi 11364 | . . . . . . 7 ⊢ -((1 / 𝐴) · 𝐴) = -1 |
| 23 | 19, 22 | eqtri 2756 | . . . . . 6 ⊢ (-(1 / 𝐴) · 𝐴) = -1 |
| 24 | 17, 23 | breqtrdi 5136 | . . . . 5 ⊢ (0 < -(1 / 𝐴) → 0 < -1) |
| 25 | lt0neg1 11634 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴))) | |
| 26 | 14, 25 | ax-mp 5 | . . . . 5 ⊢ ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)) |
| 27 | lt0neg1 11634 | . . . . . 6 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < -1)) | |
| 28 | 11, 27 | ax-mp 5 | . . . . 5 ⊢ (1 < 0 ↔ 0 < -1) |
| 29 | 24, 26, 28 | 3imtr4i 292 | . . . 4 ⊢ ((1 / 𝐴) < 0 → 1 < 0) |
| 30 | 13, 29 | mto 197 | . . 3 ⊢ ¬ (1 / 𝐴) < 0 |
| 31 | 8, 30 | pm3.2ni 880 | . 2 ⊢ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) |
| 32 | axlttri 11195 | . . 3 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) | |
| 33 | 10, 14, 32 | mp2an 692 | . 2 ⊢ (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)) |
| 34 | 31, 33 | mpbir 231 | 1 ⊢ 0 < (1 / 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 · cmul 11022 < clt 11157 -cneg 11356 / cdiv 11785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 |
| This theorem is referenced by: halfgt0 12347 0.999... 15795 sincos2sgn 16110 rpnnen2lem3 16132 rpnnen2lem4 16133 rpnnen2lem9 16138 pcoass 24971 log2tlbnd 26902 iccioo01 37444 stoweidlem34 46194 stoweidlem59 46219 |
| Copyright terms: Public domain | W3C validator |