Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop Structured version   Visualization version   GIF version

Theorem lhop 24628
 Description: L'Hôpital's Rule. If 𝐼 is an open set of the reals, 𝐹 and 𝐺 are real functions on 𝐴 containing all of 𝐼 except possibly 𝐵, which are differentiable everywhere on 𝐼 ∖ {𝐵}, 𝐹 and 𝐺 both approach 0, and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
lhop.a (𝜑𝐴 ⊆ ℝ)
lhop.f (𝜑𝐹:𝐴⟶ℝ)
lhop.g (𝜑𝐺:𝐴⟶ℝ)
lhop.i (𝜑𝐼 ∈ (topGen‘ran (,)))
lhop.b (𝜑𝐵𝐼)
lhop.d 𝐷 = (𝐼 ∖ {𝐵})
lhop.if (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
lhop.ig (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
lhop.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop.gn0 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
lhop.gd0 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
lhop.c (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐹   𝜑,𝑧   𝑧,𝐺   𝑧,𝐼
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lhop
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 23405 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32a1i 11 . . 3 (𝜑 → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4 lhop.i . . 3 (𝜑𝐼 ∈ (topGen‘ran (,)))
5 lhop.b . . 3 (𝜑𝐵𝐼)
6 eqid 2824 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
71, 6tgioo 23410 . . . 4 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
87mopni2 23109 . . 3 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐼 ∈ (topGen‘ran (,)) ∧ 𝐵𝐼) → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
93, 4, 5, 8syl3anc 1368 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
10 elssuni 4854 . . . . . . . . 9 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 (topGen‘ran (,)))
11 uniretop 23377 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1210, 11sseqtrrdi 4004 . . . . . . . 8 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 ⊆ ℝ)
134, 12syl 17 . . . . . . 7 (𝜑𝐼 ⊆ ℝ)
1413, 5sseldd 3954 . . . . . 6 (𝜑𝐵 ∈ ℝ)
15 rpre 12396 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
161bl2ioo 23406 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1714, 15, 16syl2an 598 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1817sseq1d 3984 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼 ↔ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼))
1914adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ)
20 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ+)
2120rpred 12430 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ)
2219, 21resubcld 11068 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ)
2322rexrd 10691 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ*)
2419, 20ltsubrpd 12462 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) < 𝐵)
25 lhop.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
2625adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℝ)
27 ssun1 4134 . . . . . . . . . . . 12 ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
28 unass 4128 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
29 uncom 4115 . . . . . . . . . . . . . . . 16 ({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) = (((𝐵𝑟)(,)𝐵) ∪ {𝐵})
3029uneq1i 4121 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3128, 30eqtr3i 2849 . . . . . . . . . . . . . 14 ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3219rexrd 10691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ*)
3319, 21readdcld 10670 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ)
3433rexrd 10691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ*)
3519, 20ltaddrpd 12463 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 < (𝐵 + 𝑟))
36 ioojoin 12872 . . . . . . . . . . . . . . 15 ((((𝐵𝑟) ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) ∧ ((𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3723, 32, 34, 24, 35, 36syl32anc 1375 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3831, 37syl5eq 2871 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
39 elioo2 12778 . . . . . . . . . . . . . . . . 17 (((𝐵𝑟) ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4023, 34, 39syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4119, 24, 35, 40mpbir3and 1339 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
4241snssd 4726 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
43 incom 4163 . . . . . . . . . . . . . . 15 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵})
44 ubioo 12769 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ ((𝐵𝑟)(,)𝐵)
45 lbioo 12768 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))
4644, 45pm3.2ni 878 . . . . . . . . . . . . . . . . 17 ¬ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟)))
47 elun 4111 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ↔ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))))
4846, 47mtbir 326 . . . . . . . . . . . . . . . 16 ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
49 disjsn 4632 . . . . . . . . . . . . . . . 16 (((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5048, 49mpbir 234 . . . . . . . . . . . . . . 15 ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅
5143, 50eqtri 2847 . . . . . . . . . . . . . 14 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅
52 uneqdifeq 4421 . . . . . . . . . . . . . 14 (({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∧ ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5342, 51, 52sylancl 589 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5438, 53mpbid 235 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5527, 54sseqtrrid 4006 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
56 ssdif 4102 . . . . . . . . . . . . . 14 (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼 → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
5756ad2antll 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
58 lhop.d . . . . . . . . . . . . 13 𝐷 = (𝐼 ∖ {𝐵})
5957, 58sseqtrrdi 4004 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐷)
60 lhop.if . . . . . . . . . . . . . 14 (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
61 ax-resscn 10594 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℂ)
63 fss 6519 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
6425, 61, 63sylancl 589 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
65 lhop.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6662, 64, 65dvbss 24513 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝐴)
6760, 66sstrd 3963 . . . . . . . . . . . . 13 (𝜑𝐷𝐴)
6867adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷𝐴)
6959, 68sstrd 3963 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐴)
7055, 69sstrd 3963 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐴)
7126, 70fssresd 6537 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
72 lhop.g . . . . . . . . . . 11 (𝜑𝐺:𝐴⟶ℝ)
7372adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℝ)
7473, 70fssresd 6537 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
7561a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ℝ ⊆ ℂ)
7664adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℂ)
7765adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐴 ⊆ ℝ)
78 ioossre 12797 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ⊆ ℝ
7978a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℝ)
80 eqid 2824 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8180tgioo2 23417 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8280, 81dvres 24523 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
8375, 76, 77, 79, 82syl22anc 837 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
84 retop 23376 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
85 iooretop 23380 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))
86 isopn3i 21696 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
8784, 85, 86mp2an 691 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵)
8887reseq2i 5839 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))
8983, 88syl6eq 2875 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9089dmeqd 5762 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9155, 59sstrd 3963 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐷)
9260adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐹))
9391, 92sstrd 3963 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹))
94 ssdmres 5865 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9593, 94sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9690, 95eqtrd 2859 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
97 fss 6519 . . . . . . . . . . . . . . 15 ((𝐺:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝐴⟶ℂ)
9872, 61, 97sylancl 589 . . . . . . . . . . . . . 14 (𝜑𝐺:𝐴⟶ℂ)
9998adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℂ)
10080, 81dvres 24523 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10175, 99, 77, 79, 100syl22anc 837 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10287reseq2i 5839 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
103101, 102syl6eq 2875 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
104103dmeqd 5762 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
105 lhop.ig . . . . . . . . . . . . 13 (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
106105adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐺))
10791, 106sstrd 3963 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺))
108 ssdmres 5865 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
109107, 108sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
110104, 109eqtrd 2859 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
111 limcresi 24497 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
112 lhop.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
113112adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐹 lim 𝐵))
114111, 113sseldi 3951 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
115 limcresi 24497 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
116 lhop.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
117116adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐺 lim 𝐵))
118115, 117sseldi 3951 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
119 df-ima 5556 . . . . . . . . . . 11 (𝐺 “ ((𝐵𝑟)(,)𝐵)) = ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵))
120 imass2 5954 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
12191, 120syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
122119, 121eqsstrrid 4002 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
123 lhop.gn0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
124123adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ (𝐺𝐷))
125122, 124ssneldd 3956 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))
126103rneqd 5796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
127 df-ima 5556 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
128126, 127eqtr4di 2877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)))
129 imass2 5954 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
13091, 129syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
131128, 130eqsstrd 3991 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) ⊆ ((ℝ D 𝐺) “ 𝐷))
132 lhop.gd0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
133132adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
134131, 133ssneldd 3956 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))))
135 limcresi 24497 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
13691resmptd 5897 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
13789fveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
138 fvres 6682 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
139137, 138sylan9eq 2879 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
140103fveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
141 fvres 6682 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
142140, 141sylan9eq 2879 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
143139, 142oveq12d 7169 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
144143mpteq2dva 5148 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
145136, 144eqtr4d 2862 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))))
146145oveq1d 7166 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
147135, 146sseqtrid 4005 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
148 lhop.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
149148adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
150147, 149sseldd 3954 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
15123, 19, 24, 71, 74, 96, 110, 114, 118, 125, 134, 150lhop2 24627 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
15255resmptd 5897 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
153 fvres 6682 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐹𝑧))
154 fvres 6682 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐺𝑧))
155153, 154oveq12d 7169 . . . . . . . . . . 11 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
156155mpteq2ia 5144 . . . . . . . . . 10 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
157152, 156eqtr4di 2877 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))))
158157oveq1d 7166 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
159151, 158eleqtrrd 2919 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
160 ssun2 4135 . . . . . . . . . . . 12 (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
161160, 54sseqtrrid 4006 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
162161, 69sstrd 3963 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐴)
16326, 162fssresd 6537 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
16473, 162fssresd 6537 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
165 ioossre 12797 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ
166165a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)
16780, 81dvres 24523 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
16875, 76, 77, 166, 167syl22anc 837 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
169 iooretop 23380 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
170 isopn3i 21696 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
17184, 169, 170mp2an 691 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟))
172171reseq2i 5839 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))
173168, 172syl6eq 2875 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
174173dmeqd 5762 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
175161, 59sstrd 3963 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷)
176175, 92sstrd 3963 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹))
177 ssdmres 5865 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
178176, 177sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
179174, 178eqtrd 2859 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
18080, 81dvres 24523 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
18175, 99, 77, 166, 180syl22anc 837 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
182171reseq2i 5839 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
183181, 182syl6eq 2875 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
184183dmeqd 5762 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
185175, 106sstrd 3963 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺))
186 ssdmres 5865 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
187185, 186sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
188184, 187eqtrd 2859 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
189 limcresi 24497 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
190189, 113sseldi 3951 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
191 limcresi 24497 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
192191, 117sseldi 3951 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
193 df-ima 5556 . . . . . . . . . . 11 (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) = ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))
194 imass2 5954 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
195175, 194syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
196193, 195eqsstrrid 4002 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
197196, 124ssneldd 3956 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))
198183rneqd 5796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
199 df-ima 5556 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
200198, 199eqtr4di 2877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))))
201 imass2 5954 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
202175, 201syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
203200, 202eqsstrd 3991 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) ⊆ ((ℝ D 𝐺) “ 𝐷))
204203, 133ssneldd 3956 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))))
205 limcresi 24497 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
206175resmptd 5897 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
207173fveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
208 fvres 6682 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
209207, 208sylan9eq 2879 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
210183fveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
211 fvres 6682 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
212210, 211sylan9eq 2879 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
213209, 212oveq12d 7169 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
214213mpteq2dva 5148 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
215206, 214eqtr4d 2862 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))))
216215oveq1d 7166 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
217205, 216sseqtrid 4005 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
218217, 149sseldd 3954 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
21919, 34, 35, 163, 164, 179, 188, 190, 192, 197, 204, 218lhop1 24626 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
220161resmptd 5897 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧))))
221 fvres 6682 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐹𝑧))
222 fvres 6682 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐺𝑧))
223221, 222oveq12d 7169 . . . . . . . . . . 11 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
224223mpteq2ia 5144 . . . . . . . . . 10 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧)))
225220, 224eqtr4di 2877 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))))
226225oveq1d 7166 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
227219, 226eleqtrrd 2919 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
228159, 227elind 4156 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
22959resmptd 5897 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) = (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))))
230229oveq1d 7166 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
23167sselda 3953 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → 𝑧𝐴)
23225ffvelrnda 6844 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
233231, 232syldan 594 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℝ)
234233recnd 10669 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℂ)
23572ffvelrnda 6844 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
236231, 235syldan 594 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℝ)
237236recnd 10669 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℂ)
238123adantr 484 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → ¬ 0 ∈ (𝐺𝐷))
23972ffnd 6506 . . . . . . . . . . . . . . . 16 (𝜑𝐺 Fn 𝐴)
240239adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐺 Fn 𝐴)
24167adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐷𝐴)
242 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝑧𝐷)
243 fnfvima 6989 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐴𝐷𝐴𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
244240, 241, 242, 243syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
245 eleq1 2903 . . . . . . . . . . . . . 14 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ (𝐺𝐷) ↔ 0 ∈ (𝐺𝐷)))
246244, 245syl5ibcom 248 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → ((𝐺𝑧) = 0 → 0 ∈ (𝐺𝐷)))
247246necon3bd 3028 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (¬ 0 ∈ (𝐺𝐷) → (𝐺𝑧) ≠ 0))
248238, 247mpd 15 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ≠ 0)
249234, 237, 248divcld 11416 . . . . . . . . . 10 ((𝜑𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
250249adantlr 714 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
251250fmpttd 6872 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))):𝐷⟶ℂ)
252 difss 4094 . . . . . . . . . . 11 (𝐼 ∖ {𝐵}) ⊆ 𝐼
25358, 252eqsstri 3987 . . . . . . . . . 10 𝐷𝐼
25413, 61sstrdi 3965 . . . . . . . . . 10 (𝜑𝐼 ⊆ ℂ)
255253, 254sstrid 3964 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
256255adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ ℂ)
257 eqid 2824 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))
25858uneq1i 4121 . . . . . . . . . . . . . . . . 17 (𝐷 ∪ {𝐵}) = ((𝐼 ∖ {𝐵}) ∪ {𝐵})
259 undif1 4407 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝐵}) ∪ {𝐵}) = (𝐼 ∪ {𝐵})
260258, 259eqtri 2847 . . . . . . . . . . . . . . . 16 (𝐷 ∪ {𝐵}) = (𝐼 ∪ {𝐵})
261 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)
26242, 261sstrd 3963 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ 𝐼)
263 ssequn2 4145 . . . . . . . . . . . . . . . . 17 ({𝐵} ⊆ 𝐼 ↔ (𝐼 ∪ {𝐵}) = 𝐼)
264262, 263sylib 221 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐼 ∪ {𝐵}) = 𝐼)
265260, 264syl5eq 2871 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐷 ∪ {𝐵}) = 𝐼)
266265oveq2d 7167 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t 𝐼))
26713adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℝ)
268 eqid 2824 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
26980, 268rerest 23418 . . . . . . . . . . . . . . 15 (𝐼 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
270267, 269syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
271266, 270eqtrd 2859 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((topGen‘ran (,)) ↾t 𝐼))
272271fveq2d 6667 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))) = (int‘((topGen‘ran (,)) ↾t 𝐼)))
273272fveq1d 6665 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
27480cnfldtopon 23397 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
275254adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℂ)
276 resttopon 21775 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐼 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
277274, 275, 276sylancr 590 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
278 topontop 21527 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
279277, 278syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
280270, 279eqeltrrd 2917 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((topGen‘ran (,)) ↾t 𝐼) ∈ Top)
281 iooretop 23380 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
282281a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)))
2834adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ∈ (topGen‘ran (,)))
284 restopn2 21791 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ 𝐼 ∈ (topGen‘ran (,))) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
28584, 283, 284sylancr 590 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
286282, 261, 285mpbir2and 712 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼))
287 isopn3i 21696 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐼) ∈ Top ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
288280, 286, 287syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
289273, 288eqtrd 2859 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29041, 289eleqtrrd 2919 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
291 undif1 4407 . . . . . . . . . . 11 ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵})
292 ssequn2 4145 . . . . . . . . . . . 12 ({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29342, 292sylib 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
294291, 293syl5eq 2871 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
295294fveq2d 6667 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
296290, 295eleqtrrd 2919 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})))
297251, 59, 256, 80, 257, 296limcres 24498 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
29878, 61sstri 3962 . . . . . . . . 9 ((𝐵𝑟)(,)𝐵) ⊆ ℂ
299298a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℂ)
300165, 61sstri 3962 . . . . . . . . 9 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ
301300a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ)
30259sselda 3953 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → 𝑧𝐷)
303302, 250syldan 594 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
304303fmpttd 6872 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ)
30554feq2d 6491 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ ↔ (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ))
306304, 305mpbid 235 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ)
307299, 301, 306limcun 24507 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵) = ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
308230, 297, 3073eqtr3rd 2868 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
309228, 308eleqtrd 2918 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
310309expr 460 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
31118, 310sylbid 243 . . 3 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
312311rexlimdva 3276 . 2 (𝜑 → (∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
3139, 312mpd 15 1 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∃wrex 3134   ∖ cdif 3916   ∪ cun 3917   ∩ cin 3918   ⊆ wss 3919  ∅c0 4276  {csn 4550  ∪ cuni 4824   class class class wbr 5053   ↦ cmpt 5133   × cxp 5541  dom cdm 5543  ran crn 5544   ↾ cres 5545   “ cima 5546   ∘ ccom 5547   Fn wfn 6340  ⟶wf 6341  ‘cfv 6345  (class class class)co 7151  ℂcc 10535  ℝcr 10536  0cc0 10537   + caddc 10540  ℝ*cxr 10674   < clt 10675   − cmin 10870   / cdiv 11297  ℝ+crp 12388  (,)cioo 12737  abscabs 14595   ↾t crest 16696  TopOpenctopn 16697  topGenctg 16713  ∞Metcxmet 20085  ballcbl 20087  MetOpencmopn 20090  ℂfldccnfld 20100  Topctop 21507  TopOnctopon 21524  intcnt 21631   limℂ climc 24474   D cdv 24475 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-map 8406  df-pm 8407  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12897  df-fzo 13040  df-seq 13376  df-exp 13437  df-hash 13698  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20092  df-xmet 20093  df-met 20094  df-bl 20095  df-mopn 20096  df-fbas 20097  df-fg 20098  df-cnfld 20101  df-top 21508  df-topon 21525  df-topsp 21547  df-bases 21560  df-cld 21633  df-ntr 21634  df-cls 21635  df-nei 21712  df-lp 21750  df-perf 21751  df-cn 21841  df-cnp 21842  df-haus 21929  df-cmp 22001  df-tx 22176  df-hmeo 22369  df-fil 22460  df-fm 22552  df-flim 22553  df-flf 22554  df-xms 22936  df-ms 22937  df-tms 22938  df-cncf 23492  df-limc 24478  df-dv 24479 This theorem is referenced by:  taylthlem2  24978  dirkercncflem2  42699  fourierdlem62  42763
 Copyright terms: Public domain W3C validator