MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop Structured version   Visualization version   GIF version

Theorem lhop 24216
Description: L'Hôpital's Rule. If 𝐼 is an open set of the reals, 𝐹 and 𝐺 are real functions on 𝐴 containing all of 𝐼 except possibly 𝐵, which are differentiable everywhere on 𝐼 ∖ {𝐵}, 𝐹 and 𝐺 both approach 0, and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
lhop.a (𝜑𝐴 ⊆ ℝ)
lhop.f (𝜑𝐹:𝐴⟶ℝ)
lhop.g (𝜑𝐺:𝐴⟶ℝ)
lhop.i (𝜑𝐼 ∈ (topGen‘ran (,)))
lhop.b (𝜑𝐵𝐼)
lhop.d 𝐷 = (𝐼 ∖ {𝐵})
lhop.if (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
lhop.ig (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
lhop.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop.gn0 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
lhop.gd0 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
lhop.c (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐹   𝜑,𝑧   𝑧,𝐺   𝑧,𝐼
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lhop
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2777 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 23002 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32a1i 11 . . 3 (𝜑 → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4 lhop.i . . 3 (𝜑𝐼 ∈ (topGen‘ran (,)))
5 lhop.b . . 3 (𝜑𝐵𝐼)
6 eqid 2777 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
71, 6tgioo 23007 . . . 4 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
87mopni2 22706 . . 3 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐼 ∈ (topGen‘ran (,)) ∧ 𝐵𝐼) → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
93, 4, 5, 8syl3anc 1439 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
10 elssuni 4702 . . . . . . . . 9 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 (topGen‘ran (,)))
11 uniretop 22974 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1210, 11syl6sseqr 3870 . . . . . . . 8 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 ⊆ ℝ)
134, 12syl 17 . . . . . . 7 (𝜑𝐼 ⊆ ℝ)
1413, 5sseldd 3821 . . . . . 6 (𝜑𝐵 ∈ ℝ)
15 rpre 12145 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
161bl2ioo 23003 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1714, 15, 16syl2an 589 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1817sseq1d 3850 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼 ↔ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼))
1914adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ)
20 simprl 761 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ+)
2120rpred 12181 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ)
2219, 21resubcld 10803 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ)
2322rexrd 10426 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ*)
2419, 20ltsubrpd 12213 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) < 𝐵)
25 lhop.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
2625adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℝ)
27 ssun1 3998 . . . . . . . . . . . 12 ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
28 unass 3992 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
29 uncom 3979 . . . . . . . . . . . . . . . 16 ({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) = (((𝐵𝑟)(,)𝐵) ∪ {𝐵})
3029uneq1i 3985 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3128, 30eqtr3i 2803 . . . . . . . . . . . . . 14 ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3219rexrd 10426 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ*)
3319, 21readdcld 10406 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ)
3433rexrd 10426 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ*)
3519, 20ltaddrpd 12214 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 < (𝐵 + 𝑟))
36 ioojoin 12620 . . . . . . . . . . . . . . 15 ((((𝐵𝑟) ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) ∧ ((𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3723, 32, 34, 24, 35, 36syl32anc 1446 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3831, 37syl5eq 2825 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
39 elioo2 12528 . . . . . . . . . . . . . . . . 17 (((𝐵𝑟) ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4023, 34, 39syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4119, 24, 35, 40mpbir3and 1399 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
4241snssd 4571 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
43 incom 4027 . . . . . . . . . . . . . . 15 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵})
44 ubioo 12519 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ ((𝐵𝑟)(,)𝐵)
45 lbioo 12518 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))
4644, 45pm3.2ni 867 . . . . . . . . . . . . . . . . 17 ¬ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟)))
47 elun 3975 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ↔ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))))
4846, 47mtbir 315 . . . . . . . . . . . . . . . 16 ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
49 disjsn 4477 . . . . . . . . . . . . . . . 16 (((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5048, 49mpbir 223 . . . . . . . . . . . . . . 15 ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅
5143, 50eqtri 2801 . . . . . . . . . . . . . 14 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅
52 uneqdifeq 4280 . . . . . . . . . . . . . 14 (({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∧ ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5342, 51, 52sylancl 580 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5438, 53mpbid 224 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5527, 54syl5sseqr 3872 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
56 ssdif 3967 . . . . . . . . . . . . . 14 (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼 → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
5756ad2antll 719 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
58 lhop.d . . . . . . . . . . . . 13 𝐷 = (𝐼 ∖ {𝐵})
5957, 58syl6sseqr 3870 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐷)
60 lhop.if . . . . . . . . . . . . . 14 (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
61 ax-resscn 10329 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℂ)
63 fss 6304 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
6425, 61, 63sylancl 580 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
65 lhop.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6662, 64, 65dvbss 24102 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝐴)
6760, 66sstrd 3830 . . . . . . . . . . . . 13 (𝜑𝐷𝐴)
6867adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷𝐴)
6959, 68sstrd 3830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐴)
7055, 69sstrd 3830 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐴)
7126, 70fssresd 6321 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
72 lhop.g . . . . . . . . . . 11 (𝜑𝐺:𝐴⟶ℝ)
7372adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℝ)
7473, 70fssresd 6321 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
7561a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ℝ ⊆ ℂ)
7664adantr 474 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℂ)
7765adantr 474 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐴 ⊆ ℝ)
78 ioossre 12547 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ⊆ ℝ
7978a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℝ)
80 eqid 2777 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8180tgioo2 23014 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8280, 81dvres 24112 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
8375, 76, 77, 79, 82syl22anc 829 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
84 retop 22973 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
85 iooretop 22977 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))
86 isopn3i 21294 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
8784, 85, 86mp2an 682 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵)
8887reseq2i 5639 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))
8983, 88syl6eq 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9089dmeqd 5571 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9155, 59sstrd 3830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐷)
9260adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐹))
9391, 92sstrd 3830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹))
94 ssdmres 5669 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9593, 94sylib 210 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9690, 95eqtrd 2813 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
97 fss 6304 . . . . . . . . . . . . . . 15 ((𝐺:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝐴⟶ℂ)
9872, 61, 97sylancl 580 . . . . . . . . . . . . . 14 (𝜑𝐺:𝐴⟶ℂ)
9998adantr 474 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℂ)
10080, 81dvres 24112 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10175, 99, 77, 79, 100syl22anc 829 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10287reseq2i 5639 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
103101, 102syl6eq 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
104103dmeqd 5571 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
105 lhop.ig . . . . . . . . . . . . 13 (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
106105adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐺))
10791, 106sstrd 3830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺))
108 ssdmres 5669 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
109107, 108sylib 210 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
110104, 109eqtrd 2813 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
111 limcresi 24086 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
112 lhop.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
113112adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐹 lim 𝐵))
114111, 113sseldi 3818 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
115 limcresi 24086 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
116 lhop.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
117116adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐺 lim 𝐵))
118115, 117sseldi 3818 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
119 df-ima 5368 . . . . . . . . . . 11 (𝐺 “ ((𝐵𝑟)(,)𝐵)) = ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵))
120 imass2 5755 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
12191, 120syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
122119, 121syl5eqssr 3868 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
123 lhop.gn0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
124123adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ (𝐺𝐷))
125122, 124ssneldd 3823 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))
126103rneqd 5598 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
127 df-ima 5368 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
128126, 127syl6eqr 2831 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)))
129 imass2 5755 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
13091, 129syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
131128, 130eqsstrd 3857 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) ⊆ ((ℝ D 𝐺) “ 𝐷))
132 lhop.gd0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
133132adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
134131, 133ssneldd 3823 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))))
135 limcresi 24086 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
13691resmptd 5702 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
13789fveq1d 6448 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
138 fvres 6465 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
139137, 138sylan9eq 2833 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
140103fveq1d 6448 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
141 fvres 6465 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
142140, 141sylan9eq 2833 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
143139, 142oveq12d 6940 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
144143mpteq2dva 4979 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
145136, 144eqtr4d 2816 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))))
146145oveq1d 6937 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
147135, 146syl5sseq 3871 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
148 lhop.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
149148adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
150147, 149sseldd 3821 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
15123, 19, 24, 71, 74, 96, 110, 114, 118, 125, 134, 150lhop2 24215 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
15255resmptd 5702 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
153 fvres 6465 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐹𝑧))
154 fvres 6465 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐺𝑧))
155153, 154oveq12d 6940 . . . . . . . . . . 11 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
156155mpteq2ia 4975 . . . . . . . . . 10 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
157152, 156syl6eqr 2831 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))))
158157oveq1d 6937 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
159151, 158eleqtrrd 2861 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
160 ssun2 3999 . . . . . . . . . . . 12 (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
161160, 54syl5sseqr 3872 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
162161, 69sstrd 3830 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐴)
16326, 162fssresd 6321 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
16473, 162fssresd 6321 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
165 ioossre 12547 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ
166165a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)
16780, 81dvres 24112 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
16875, 76, 77, 166, 167syl22anc 829 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
169 iooretop 22977 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
170 isopn3i 21294 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
17184, 169, 170mp2an 682 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟))
172171reseq2i 5639 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))
173168, 172syl6eq 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
174173dmeqd 5571 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
175161, 59sstrd 3830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷)
176175, 92sstrd 3830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹))
177 ssdmres 5669 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
178176, 177sylib 210 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
179174, 178eqtrd 2813 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
18080, 81dvres 24112 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
18175, 99, 77, 166, 180syl22anc 829 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
182171reseq2i 5639 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
183181, 182syl6eq 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
184183dmeqd 5571 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
185175, 106sstrd 3830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺))
186 ssdmres 5669 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
187185, 186sylib 210 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
188184, 187eqtrd 2813 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
189 limcresi 24086 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
190189, 113sseldi 3818 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
191 limcresi 24086 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
192191, 117sseldi 3818 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
193 df-ima 5368 . . . . . . . . . . 11 (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) = ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))
194 imass2 5755 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
195175, 194syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
196193, 195syl5eqssr 3868 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
197196, 124ssneldd 3823 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))
198183rneqd 5598 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
199 df-ima 5368 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
200198, 199syl6eqr 2831 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))))
201 imass2 5755 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
202175, 201syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
203200, 202eqsstrd 3857 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) ⊆ ((ℝ D 𝐺) “ 𝐷))
204203, 133ssneldd 3823 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))))
205 limcresi 24086 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
206175resmptd 5702 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
207173fveq1d 6448 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
208 fvres 6465 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
209207, 208sylan9eq 2833 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
210183fveq1d 6448 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
211 fvres 6465 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
212210, 211sylan9eq 2833 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
213209, 212oveq12d 6940 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
214213mpteq2dva 4979 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
215206, 214eqtr4d 2816 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))))
216215oveq1d 6937 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
217205, 216syl5sseq 3871 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
218217, 149sseldd 3821 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
21919, 34, 35, 163, 164, 179, 188, 190, 192, 197, 204, 218lhop1 24214 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
220161resmptd 5702 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧))))
221 fvres 6465 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐹𝑧))
222 fvres 6465 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐺𝑧))
223221, 222oveq12d 6940 . . . . . . . . . . 11 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
224223mpteq2ia 4975 . . . . . . . . . 10 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧)))
225220, 224syl6eqr 2831 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))))
226225oveq1d 6937 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
227219, 226eleqtrrd 2861 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
228159, 227elind 4020 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
22959resmptd 5702 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) = (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))))
230229oveq1d 6937 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
23167sselda 3820 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → 𝑧𝐴)
23225ffvelrnda 6623 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
233231, 232syldan 585 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℝ)
234233recnd 10405 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℂ)
23572ffvelrnda 6623 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
236231, 235syldan 585 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℝ)
237236recnd 10405 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℂ)
238123adantr 474 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → ¬ 0 ∈ (𝐺𝐷))
23972ffnd 6292 . . . . . . . . . . . . . . . 16 (𝜑𝐺 Fn 𝐴)
240239adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐺 Fn 𝐴)
24167adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐷𝐴)
242 simpr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝑧𝐷)
243 fnfvima 6769 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐴𝐷𝐴𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
244240, 241, 242, 243syl3anc 1439 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
245 eleq1 2846 . . . . . . . . . . . . . 14 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ (𝐺𝐷) ↔ 0 ∈ (𝐺𝐷)))
246244, 245syl5ibcom 237 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → ((𝐺𝑧) = 0 → 0 ∈ (𝐺𝐷)))
247246necon3bd 2982 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (¬ 0 ∈ (𝐺𝐷) → (𝐺𝑧) ≠ 0))
248238, 247mpd 15 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ≠ 0)
249234, 237, 248divcld 11151 . . . . . . . . . 10 ((𝜑𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
250249adantlr 705 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
251250fmpttd 6649 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))):𝐷⟶ℂ)
252 difss 3959 . . . . . . . . . . 11 (𝐼 ∖ {𝐵}) ⊆ 𝐼
25358, 252eqsstri 3853 . . . . . . . . . 10 𝐷𝐼
25413, 61syl6ss 3832 . . . . . . . . . 10 (𝜑𝐼 ⊆ ℂ)
255253, 254syl5ss 3831 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
256255adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ ℂ)
257 eqid 2777 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))
25858uneq1i 3985 . . . . . . . . . . . . . . . . 17 (𝐷 ∪ {𝐵}) = ((𝐼 ∖ {𝐵}) ∪ {𝐵})
259 undif1 4266 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝐵}) ∪ {𝐵}) = (𝐼 ∪ {𝐵})
260258, 259eqtri 2801 . . . . . . . . . . . . . . . 16 (𝐷 ∪ {𝐵}) = (𝐼 ∪ {𝐵})
261 simprr 763 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)
26242, 261sstrd 3830 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ 𝐼)
263 ssequn2 4008 . . . . . . . . . . . . . . . . 17 ({𝐵} ⊆ 𝐼 ↔ (𝐼 ∪ {𝐵}) = 𝐼)
264262, 263sylib 210 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐼 ∪ {𝐵}) = 𝐼)
265260, 264syl5eq 2825 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐷 ∪ {𝐵}) = 𝐼)
266265oveq2d 6938 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t 𝐼))
26713adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℝ)
268 eqid 2777 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
26980, 268rerest 23015 . . . . . . . . . . . . . . 15 (𝐼 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
270267, 269syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
271266, 270eqtrd 2813 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((topGen‘ran (,)) ↾t 𝐼))
272271fveq2d 6450 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))) = (int‘((topGen‘ran (,)) ↾t 𝐼)))
273272fveq1d 6448 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
27480cnfldtopon 22994 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
275254adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℂ)
276 resttopon 21373 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐼 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
277274, 275, 276sylancr 581 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
278 topontop 21125 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
279277, 278syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
280270, 279eqeltrrd 2859 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((topGen‘ran (,)) ↾t 𝐼) ∈ Top)
281 iooretop 22977 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
282281a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)))
2834adantr 474 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ∈ (topGen‘ran (,)))
284 restopn2 21389 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ 𝐼 ∈ (topGen‘ran (,))) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
28584, 283, 284sylancr 581 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
286282, 261, 285mpbir2and 703 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼))
287 isopn3i 21294 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐼) ∈ Top ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
288280, 286, 287syl2anc 579 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
289273, 288eqtrd 2813 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29041, 289eleqtrrd 2861 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
291 undif1 4266 . . . . . . . . . . 11 ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵})
292 ssequn2 4008 . . . . . . . . . . . 12 ({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29342, 292sylib 210 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
294291, 293syl5eq 2825 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
295294fveq2d 6450 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
296290, 295eleqtrrd 2861 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})))
297251, 59, 256, 80, 257, 296limcres 24087 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
29878, 61sstri 3829 . . . . . . . . 9 ((𝐵𝑟)(,)𝐵) ⊆ ℂ
299298a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℂ)
300165, 61sstri 3829 . . . . . . . . 9 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ
301300a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ)
30259sselda 3820 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → 𝑧𝐷)
303302, 250syldan 585 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
304303fmpttd 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ)
30554feq2d 6277 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ ↔ (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ))
306304, 305mpbid 224 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ)
307299, 301, 306limcun 24096 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵) = ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
308230, 297, 3073eqtr3rd 2822 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
309228, 308eleqtrd 2860 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
310309expr 450 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
31118, 310sylbid 232 . . 3 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
312311rexlimdva 3212 . 2 (𝜑 → (∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
3139, 312mpd 15 1 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wrex 3090  cdif 3788  cun 3789  cin 3790  wss 3791  c0 4140  {csn 4397   cuni 4671   class class class wbr 4886  cmpt 4965   × cxp 5353  dom cdm 5355  ran crn 5356  cres 5357  cima 5358  ccom 5359   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272   + caddc 10275  *cxr 10410   < clt 10411  cmin 10606   / cdiv 11032  +crp 12137  (,)cioo 12487  abscabs 14381  t crest 16467  TopOpenctopn 16468  topGenctg 16484  ∞Metcxmet 20127  ballcbl 20129  MetOpencmopn 20132  fldccnfld 20142  Topctop 21105  TopOnctopon 21122  intcnt 21229   lim climc 24063   D cdv 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068
This theorem is referenced by:  taylthlem2  24565  dirkercncflem2  41230  fourierdlem62  41294
  Copyright terms: Public domain W3C validator