MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop Structured version   Visualization version   GIF version

Theorem lhop 25873
Description: L'Hôpital's Rule. If 𝐼 is an open set of the reals, 𝐹 and 𝐺 are real functions on 𝐴 containing all of 𝐼 except possibly 𝐵, which are differentiable everywhere on 𝐼 ∖ {𝐵}, 𝐹 and 𝐺 both approach 0, and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
lhop.a (𝜑𝐴 ⊆ ℝ)
lhop.f (𝜑𝐹:𝐴⟶ℝ)
lhop.g (𝜑𝐺:𝐴⟶ℝ)
lhop.i (𝜑𝐼 ∈ (topGen‘ran (,)))
lhop.b (𝜑𝐵𝐼)
lhop.d 𝐷 = (𝐼 ∖ {𝐵})
lhop.if (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
lhop.ig (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
lhop.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop.gn0 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
lhop.gd0 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
lhop.c (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐹   𝜑,𝑧   𝑧,𝐺   𝑧,𝐼
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lhop
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 24631 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32a1i 11 . . 3 (𝜑 → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4 lhop.i . . 3 (𝜑𝐼 ∈ (topGen‘ran (,)))
5 lhop.b . . 3 (𝜑𝐵𝐼)
6 eqid 2724 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
71, 6tgioo 24636 . . . 4 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
87mopni2 24326 . . 3 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐼 ∈ (topGen‘ran (,)) ∧ 𝐵𝐼) → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
93, 4, 5, 8syl3anc 1368 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
10 elssuni 4932 . . . . . . . . 9 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 (topGen‘ran (,)))
11 uniretop 24603 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1210, 11sseqtrrdi 4026 . . . . . . . 8 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 ⊆ ℝ)
134, 12syl 17 . . . . . . 7 (𝜑𝐼 ⊆ ℝ)
1413, 5sseldd 3976 . . . . . 6 (𝜑𝐵 ∈ ℝ)
15 rpre 12980 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
161bl2ioo 24632 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1714, 15, 16syl2an 595 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1817sseq1d 4006 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼 ↔ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼))
1914adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ)
20 simprl 768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ+)
2120rpred 13014 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ)
2219, 21resubcld 11640 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ)
2322rexrd 11262 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ*)
2419, 20ltsubrpd 13046 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) < 𝐵)
25 lhop.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
2625adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℝ)
27 ssun1 4165 . . . . . . . . . . . 12 ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
28 unass 4159 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
29 uncom 4146 . . . . . . . . . . . . . . . 16 ({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) = (((𝐵𝑟)(,)𝐵) ∪ {𝐵})
3029uneq1i 4152 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3128, 30eqtr3i 2754 . . . . . . . . . . . . . 14 ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3219rexrd 11262 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ*)
3319, 21readdcld 11241 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ)
3433rexrd 11262 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ*)
3519, 20ltaddrpd 13047 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 < (𝐵 + 𝑟))
36 ioojoin 13458 . . . . . . . . . . . . . . 15 ((((𝐵𝑟) ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) ∧ ((𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3723, 32, 34, 24, 35, 36syl32anc 1375 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3831, 37eqtrid 2776 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
39 elioo2 13363 . . . . . . . . . . . . . . . . 17 (((𝐵𝑟) ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4023, 34, 39syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4119, 24, 35, 40mpbir3and 1339 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
4241snssd 4805 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
43 incom 4194 . . . . . . . . . . . . . . 15 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵})
44 ubioo 13354 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ ((𝐵𝑟)(,)𝐵)
45 lbioo 13353 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))
4644, 45pm3.2ni 877 . . . . . . . . . . . . . . . . 17 ¬ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟)))
47 elun 4141 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ↔ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))))
4846, 47mtbir 323 . . . . . . . . . . . . . . . 16 ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
49 disjsn 4708 . . . . . . . . . . . . . . . 16 (((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5048, 49mpbir 230 . . . . . . . . . . . . . . 15 ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅
5143, 50eqtri 2752 . . . . . . . . . . . . . 14 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅
52 uneqdifeq 4485 . . . . . . . . . . . . . 14 (({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∧ ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5342, 51, 52sylancl 585 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5438, 53mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5527, 54sseqtrrid 4028 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
56 ssdif 4132 . . . . . . . . . . . . . 14 (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼 → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
5756ad2antll 726 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
58 lhop.d . . . . . . . . . . . . 13 𝐷 = (𝐼 ∖ {𝐵})
5957, 58sseqtrrdi 4026 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐷)
60 lhop.if . . . . . . . . . . . . . 14 (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
61 ax-resscn 11164 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℂ)
63 fss 6725 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
6425, 61, 63sylancl 585 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
65 lhop.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6662, 64, 65dvbss 25754 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝐴)
6760, 66sstrd 3985 . . . . . . . . . . . . 13 (𝜑𝐷𝐴)
6867adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷𝐴)
6959, 68sstrd 3985 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐴)
7055, 69sstrd 3985 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐴)
7126, 70fssresd 6749 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
72 lhop.g . . . . . . . . . . 11 (𝜑𝐺:𝐴⟶ℝ)
7372adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℝ)
7473, 70fssresd 6749 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
7561a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ℝ ⊆ ℂ)
7664adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℂ)
7765adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐴 ⊆ ℝ)
78 ioossre 13383 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ⊆ ℝ
7978a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℝ)
80 eqid 2724 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8180tgioo2 24643 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8280, 81dvres 25764 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
8375, 76, 77, 79, 82syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
84 retop 24602 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
85 iooretop 24606 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))
86 isopn3i 22910 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
8784, 85, 86mp2an 689 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵)
8887reseq2i 5969 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))
8983, 88eqtrdi 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9089dmeqd 5896 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9155, 59sstrd 3985 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐷)
9260adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐹))
9391, 92sstrd 3985 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹))
94 ssdmres 5995 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9593, 94sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9690, 95eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
97 fss 6725 . . . . . . . . . . . . . . 15 ((𝐺:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝐴⟶ℂ)
9872, 61, 97sylancl 585 . . . . . . . . . . . . . 14 (𝜑𝐺:𝐴⟶ℂ)
9998adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℂ)
10080, 81dvres 25764 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10175, 99, 77, 79, 100syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10287reseq2i 5969 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
103101, 102eqtrdi 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
104103dmeqd 5896 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
105 lhop.ig . . . . . . . . . . . . 13 (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
106105adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐺))
10791, 106sstrd 3985 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺))
108 ssdmres 5995 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
109107, 108sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
110104, 109eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
111 limcresi 25738 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
112 lhop.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
113112adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐹 lim 𝐵))
114111, 113sselid 3973 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
115 limcresi 25738 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
116 lhop.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
117116adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐺 lim 𝐵))
118115, 117sselid 3973 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
119 df-ima 5680 . . . . . . . . . . 11 (𝐺 “ ((𝐵𝑟)(,)𝐵)) = ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵))
120 imass2 6092 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
12191, 120syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
122119, 121eqsstrrid 4024 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
123 lhop.gn0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
124123adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ (𝐺𝐷))
125122, 124ssneldd 3978 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))
126103rneqd 5928 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
127 df-ima 5680 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
128126, 127eqtr4di 2782 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)))
129 imass2 6092 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
13091, 129syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
131128, 130eqsstrd 4013 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) ⊆ ((ℝ D 𝐺) “ 𝐷))
132 lhop.gd0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
133132adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
134131, 133ssneldd 3978 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))))
135 limcresi 25738 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
13691resmptd 6031 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
13789fveq1d 6884 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
138 fvres 6901 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
139137, 138sylan9eq 2784 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
140103fveq1d 6884 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
141 fvres 6901 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
142140, 141sylan9eq 2784 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
143139, 142oveq12d 7420 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
144143mpteq2dva 5239 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
145136, 144eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))))
146145oveq1d 7417 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
147135, 146sseqtrid 4027 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
148 lhop.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
149148adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
150147, 149sseldd 3976 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
15123, 19, 24, 71, 74, 96, 110, 114, 118, 125, 134, 150lhop2 25872 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
15255resmptd 6031 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
153 fvres 6901 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐹𝑧))
154 fvres 6901 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐺𝑧))
155153, 154oveq12d 7420 . . . . . . . . . . 11 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
156155mpteq2ia 5242 . . . . . . . . . 10 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
157152, 156eqtr4di 2782 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))))
158157oveq1d 7417 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
159151, 158eleqtrrd 2828 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
160 ssun2 4166 . . . . . . . . . . . 12 (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
161160, 54sseqtrrid 4028 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
162161, 69sstrd 3985 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐴)
16326, 162fssresd 6749 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
16473, 162fssresd 6749 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
165 ioossre 13383 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ
166165a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)
16780, 81dvres 25764 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
16875, 76, 77, 166, 167syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
169 iooretop 24606 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
170 isopn3i 22910 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
17184, 169, 170mp2an 689 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟))
172171reseq2i 5969 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))
173168, 172eqtrdi 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
174173dmeqd 5896 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
175161, 59sstrd 3985 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷)
176175, 92sstrd 3985 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹))
177 ssdmres 5995 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
178176, 177sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
179174, 178eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
18080, 81dvres 25764 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
18175, 99, 77, 166, 180syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
182171reseq2i 5969 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
183181, 182eqtrdi 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
184183dmeqd 5896 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
185175, 106sstrd 3985 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺))
186 ssdmres 5995 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
187185, 186sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
188184, 187eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
189 limcresi 25738 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
190189, 113sselid 3973 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
191 limcresi 25738 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
192191, 117sselid 3973 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
193 df-ima 5680 . . . . . . . . . . 11 (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) = ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))
194 imass2 6092 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
195175, 194syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
196193, 195eqsstrrid 4024 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
197196, 124ssneldd 3978 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))
198183rneqd 5928 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
199 df-ima 5680 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
200198, 199eqtr4di 2782 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))))
201 imass2 6092 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
202175, 201syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
203200, 202eqsstrd 4013 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) ⊆ ((ℝ D 𝐺) “ 𝐷))
204203, 133ssneldd 3978 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))))
205 limcresi 25738 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
206175resmptd 6031 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
207173fveq1d 6884 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
208 fvres 6901 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
209207, 208sylan9eq 2784 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
210183fveq1d 6884 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
211 fvres 6901 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
212210, 211sylan9eq 2784 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
213209, 212oveq12d 7420 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
214213mpteq2dva 5239 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
215206, 214eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))))
216215oveq1d 7417 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
217205, 216sseqtrid 4027 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
218217, 149sseldd 3976 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
21919, 34, 35, 163, 164, 179, 188, 190, 192, 197, 204, 218lhop1 25871 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
220161resmptd 6031 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧))))
221 fvres 6901 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐹𝑧))
222 fvres 6901 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐺𝑧))
223221, 222oveq12d 7420 . . . . . . . . . . 11 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
224223mpteq2ia 5242 . . . . . . . . . 10 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧)))
225220, 224eqtr4di 2782 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))))
226225oveq1d 7417 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
227219, 226eleqtrrd 2828 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
228159, 227elind 4187 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
22959resmptd 6031 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) = (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))))
230229oveq1d 7417 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
23167sselda 3975 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → 𝑧𝐴)
23225ffvelcdmda 7077 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
233231, 232syldan 590 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℝ)
234233recnd 11240 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℂ)
23572ffvelcdmda 7077 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
236231, 235syldan 590 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℝ)
237236recnd 11240 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℂ)
238123adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → ¬ 0 ∈ (𝐺𝐷))
23972ffnd 6709 . . . . . . . . . . . . . . . 16 (𝜑𝐺 Fn 𝐴)
240239adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐺 Fn 𝐴)
24167adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐷𝐴)
242 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝑧𝐷)
243 fnfvima 7227 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐴𝐷𝐴𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
244240, 241, 242, 243syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
245 eleq1 2813 . . . . . . . . . . . . . 14 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ (𝐺𝐷) ↔ 0 ∈ (𝐺𝐷)))
246244, 245syl5ibcom 244 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → ((𝐺𝑧) = 0 → 0 ∈ (𝐺𝐷)))
247246necon3bd 2946 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (¬ 0 ∈ (𝐺𝐷) → (𝐺𝑧) ≠ 0))
248238, 247mpd 15 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ≠ 0)
249234, 237, 248divcld 11988 . . . . . . . . . 10 ((𝜑𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
250249adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
251250fmpttd 7107 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))):𝐷⟶ℂ)
252 difss 4124 . . . . . . . . . . 11 (𝐼 ∖ {𝐵}) ⊆ 𝐼
25358, 252eqsstri 4009 . . . . . . . . . 10 𝐷𝐼
25413, 61sstrdi 3987 . . . . . . . . . 10 (𝜑𝐼 ⊆ ℂ)
255253, 254sstrid 3986 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
256255adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ ℂ)
257 eqid 2724 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))
25858uneq1i 4152 . . . . . . . . . . . . . . . . 17 (𝐷 ∪ {𝐵}) = ((𝐼 ∖ {𝐵}) ∪ {𝐵})
259 undif1 4468 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝐵}) ∪ {𝐵}) = (𝐼 ∪ {𝐵})
260258, 259eqtri 2752 . . . . . . . . . . . . . . . 16 (𝐷 ∪ {𝐵}) = (𝐼 ∪ {𝐵})
261 simprr 770 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)
26242, 261sstrd 3985 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ 𝐼)
263 ssequn2 4176 . . . . . . . . . . . . . . . . 17 ({𝐵} ⊆ 𝐼 ↔ (𝐼 ∪ {𝐵}) = 𝐼)
264262, 263sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐼 ∪ {𝐵}) = 𝐼)
265260, 264eqtrid 2776 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐷 ∪ {𝐵}) = 𝐼)
266265oveq2d 7418 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t 𝐼))
26713adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℝ)
268 eqid 2724 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
26980, 268rerest 24644 . . . . . . . . . . . . . . 15 (𝐼 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
270267, 269syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
271266, 270eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((topGen‘ran (,)) ↾t 𝐼))
272271fveq2d 6886 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))) = (int‘((topGen‘ran (,)) ↾t 𝐼)))
273272fveq1d 6884 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
27480cnfldtopon 24623 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
275254adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℂ)
276 resttopon 22989 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐼 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
277274, 275, 276sylancr 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
278 topontop 22739 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
279277, 278syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
280270, 279eqeltrrd 2826 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((topGen‘ran (,)) ↾t 𝐼) ∈ Top)
281 iooretop 24606 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
282281a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)))
2834adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ∈ (topGen‘ran (,)))
284 restopn2 23005 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ 𝐼 ∈ (topGen‘ran (,))) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
28584, 283, 284sylancr 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
286282, 261, 285mpbir2and 710 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼))
287 isopn3i 22910 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐼) ∈ Top ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
288280, 286, 287syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
289273, 288eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29041, 289eleqtrrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
291 undif1 4468 . . . . . . . . . . 11 ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵})
292 ssequn2 4176 . . . . . . . . . . . 12 ({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29342, 292sylib 217 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
294291, 293eqtrid 2776 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
295294fveq2d 6886 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
296290, 295eleqtrrd 2828 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})))
297251, 59, 256, 80, 257, 296limcres 25739 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
29878, 61sstri 3984 . . . . . . . . 9 ((𝐵𝑟)(,)𝐵) ⊆ ℂ
299298a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℂ)
300165, 61sstri 3984 . . . . . . . . 9 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ
301300a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ)
30259sselda 3975 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → 𝑧𝐷)
303302, 250syldan 590 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
304303fmpttd 7107 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ)
30554feq2d 6694 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ ↔ (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ))
306304, 305mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ)
307299, 301, 306limcun 25748 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵) = ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
308230, 297, 3073eqtr3rd 2773 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
309228, 308eleqtrd 2827 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
310309expr 456 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
31118, 310sylbid 239 . . 3 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
312311rexlimdva 3147 . 2 (𝜑 → (∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
3139, 312mpd 15 1 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wrex 3062  cdif 3938  cun 3939  cin 3940  wss 3941  c0 4315  {csn 4621   cuni 4900   class class class wbr 5139  cmpt 5222   × cxp 5665  dom cdm 5667  ran crn 5668  cres 5669  cima 5670  ccom 5671   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  0cc0 11107   + caddc 11110  *cxr 11245   < clt 11246  cmin 11442   / cdiv 11869  +crp 12972  (,)cioo 13322  abscabs 15179  t crest 17367  TopOpenctopn 17368  topGenctg 17384  ∞Metcxmet 21215  ballcbl 21217  MetOpencmopn 21220  fldccnfld 21230  Topctop 22719  TopOnctopon 22736  intcnt 22845   lim climc 25715   D cdv 25716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioo 13326  df-ioc 13327  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18988  df-cntz 19225  df-cmn 19694  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-fbas 21227  df-fg 21228  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-nei 22926  df-lp 22964  df-perf 22965  df-cn 23055  df-cnp 23056  df-haus 23143  df-cmp 23215  df-tx 23390  df-hmeo 23583  df-fil 23674  df-fm 23766  df-flim 23767  df-flf 23768  df-xms 24150  df-ms 24151  df-tms 24152  df-cncf 24722  df-limc 25719  df-dv 25720
This theorem is referenced by:  taylthlem2  26229  gg-taylthlem2  35658  dirkercncflem2  45330  fourierdlem62  45394
  Copyright terms: Public domain W3C validator