MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop Structured version   Visualization version   GIF version

Theorem lhop 25180
Description: L'Hôpital's Rule. If 𝐼 is an open set of the reals, 𝐹 and 𝐺 are real functions on 𝐴 containing all of 𝐼 except possibly 𝐵, which are differentiable everywhere on 𝐼 ∖ {𝐵}, 𝐹 and 𝐺 both approach 0, and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
lhop.a (𝜑𝐴 ⊆ ℝ)
lhop.f (𝜑𝐹:𝐴⟶ℝ)
lhop.g (𝜑𝐺:𝐴⟶ℝ)
lhop.i (𝜑𝐼 ∈ (topGen‘ran (,)))
lhop.b (𝜑𝐵𝐼)
lhop.d 𝐷 = (𝐼 ∖ {𝐵})
lhop.if (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
lhop.ig (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
lhop.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop.gn0 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
lhop.gd0 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
lhop.c (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐹   𝜑,𝑧   𝑧,𝐺   𝑧,𝐼
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lhop
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 23954 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32a1i 11 . . 3 (𝜑 → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
4 lhop.i . . 3 (𝜑𝐼 ∈ (topGen‘ran (,)))
5 lhop.b . . 3 (𝜑𝐵𝐼)
6 eqid 2738 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
71, 6tgioo 23959 . . . 4 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
87mopni2 23649 . . 3 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐼 ∈ (topGen‘ran (,)) ∧ 𝐵𝐼) → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
93, 4, 5, 8syl3anc 1370 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼)
10 elssuni 4871 . . . . . . . . 9 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 (topGen‘ran (,)))
11 uniretop 23926 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1210, 11sseqtrrdi 3972 . . . . . . . 8 (𝐼 ∈ (topGen‘ran (,)) → 𝐼 ⊆ ℝ)
134, 12syl 17 . . . . . . 7 (𝜑𝐼 ⊆ ℝ)
1413, 5sseldd 3922 . . . . . 6 (𝜑𝐵 ∈ ℝ)
15 rpre 12738 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
161bl2ioo 23955 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1714, 15, 16syl2an 596 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
1817sseq1d 3952 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼 ↔ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼))
1914adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ)
20 simprl 768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ+)
2120rpred 12772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝑟 ∈ ℝ)
2219, 21resubcld 11403 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ)
2322rexrd 11025 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) ∈ ℝ*)
2419, 20ltsubrpd 12804 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵𝑟) < 𝐵)
25 lhop.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
2625adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℝ)
27 ssun1 4106 . . . . . . . . . . . 12 ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
28 unass 4100 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
29 uncom 4087 . . . . . . . . . . . . . . . 16 ({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) = (((𝐵𝑟)(,)𝐵) ∪ {𝐵})
3029uneq1i 4093 . . . . . . . . . . . . . . 15 (({𝐵} ∪ ((𝐵𝑟)(,)𝐵)) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3128, 30eqtr3i 2768 . . . . . . . . . . . . . 14 ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟)))
3219rexrd 11025 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ℝ*)
3319, 21readdcld 11004 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ)
3433rexrd 11025 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 + 𝑟) ∈ ℝ*)
3519, 20ltaddrpd 12805 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 < (𝐵 + 𝑟))
36 ioojoin 13215 . . . . . . . . . . . . . . 15 ((((𝐵𝑟) ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) ∧ ((𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3723, 32, 34, 24, 35, 36syl32anc 1377 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
3831, 37eqtrid 2790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
39 elioo2 13120 . . . . . . . . . . . . . . . . 17 (((𝐵𝑟) ∈ ℝ* ∧ (𝐵 + 𝑟) ∈ ℝ*) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4023, 34, 39syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (𝐵 ∈ ℝ ∧ (𝐵𝑟) < 𝐵𝐵 < (𝐵 + 𝑟))))
4119, 24, 35, 40mpbir3and 1341 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
4241snssd 4742 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)))
43 incom 4135 . . . . . . . . . . . . . . 15 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵})
44 ubioo 13111 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ ((𝐵𝑟)(,)𝐵)
45 lbioo 13110 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))
4644, 45pm3.2ni 878 . . . . . . . . . . . . . . . . 17 ¬ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟)))
47 elun 4083 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ↔ (𝐵 ∈ ((𝐵𝑟)(,)𝐵) ∨ 𝐵 ∈ (𝐵(,)(𝐵 + 𝑟))))
4846, 47mtbir 323 . . . . . . . . . . . . . . . 16 ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
49 disjsn 4647 . . . . . . . . . . . . . . . 16 (((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5048, 49mpbir 230 . . . . . . . . . . . . . . 15 ((((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))) ∩ {𝐵}) = ∅
5143, 50eqtri 2766 . . . . . . . . . . . . . 14 ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅
52 uneqdifeq 4423 . . . . . . . . . . . . . 14 (({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∧ ({𝐵} ∩ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ∅) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5342, 51, 52sylancl 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (({𝐵} ∪ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))))
5438, 53mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) = (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟))))
5527, 54sseqtrrid 3974 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
56 ssdif 4074 . . . . . . . . . . . . . 14 (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼 → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
5756ad2antll 726 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ (𝐼 ∖ {𝐵}))
58 lhop.d . . . . . . . . . . . . 13 𝐷 = (𝐼 ∖ {𝐵})
5957, 58sseqtrrdi 3972 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐷)
60 lhop.if . . . . . . . . . . . . . 14 (𝜑𝐷 ⊆ dom (ℝ D 𝐹))
61 ax-resscn 10928 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℂ)
63 fss 6617 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
6425, 61, 63sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
65 lhop.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6662, 64, 65dvbss 25065 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝐴)
6760, 66sstrd 3931 . . . . . . . . . . . . 13 (𝜑𝐷𝐴)
6867adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷𝐴)
6959, 68sstrd 3931 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ⊆ 𝐴)
7055, 69sstrd 3931 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐴)
7126, 70fssresd 6641 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
72 lhop.g . . . . . . . . . . 11 (𝜑𝐺:𝐴⟶ℝ)
7372adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℝ)
7473, 70fssresd 6641 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ ((𝐵𝑟)(,)𝐵)):((𝐵𝑟)(,)𝐵)⟶ℝ)
7561a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ℝ ⊆ ℂ)
7664adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐹:𝐴⟶ℂ)
7765adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐴 ⊆ ℝ)
78 ioossre 13140 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ⊆ ℝ
7978a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℝ)
80 eqid 2738 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8180tgioo2 23966 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8280, 81dvres 25075 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
8375, 76, 77, 79, 82syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
84 retop 23925 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
85 iooretop 23929 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))
86 isopn3i 22233 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ ((𝐵𝑟)(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
8784, 85, 86mp2an 689 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵)
8887reseq2i 5888 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))
8983, 88eqtrdi 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9089dmeqd 5814 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)))
9155, 59sstrd 3931 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ 𝐷)
9260adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐹))
9391, 92sstrd 3931 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹))
94 ssdmres 5914 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9593, 94sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
9690, 95eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
97 fss 6617 . . . . . . . . . . . . . . 15 ((𝐺:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝐴⟶ℂ)
9872, 61, 97sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐺:𝐴⟶ℂ)
9998adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐺:𝐴⟶ℂ)
10080, 81dvres 25075 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ ((𝐵𝑟)(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10175, 99, 77, 79, 100syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))))
10287reseq2i 5888 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
103101, 102eqtrdi 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
104103dmeqd 5814 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
105 lhop.ig . . . . . . . . . . . . 13 (𝜑𝐷 ⊆ dom (ℝ D 𝐺))
106105adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ dom (ℝ D 𝐺))
10791, 106sstrd 3931 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺))
108 ssdmres 5914 . . . . . . . . . . 11 (((𝐵𝑟)(,)𝐵) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
109107, 108sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)) = ((𝐵𝑟)(,)𝐵))
110104, 109eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((𝐵𝑟)(,)𝐵))
111 limcresi 25049 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
112 lhop.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
113112adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐹 lim 𝐵))
114111, 113sselid 3919 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
115 limcresi 25049 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
116 lhop.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
117116adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ (𝐺 lim 𝐵))
118115, 117sselid 3919 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
119 df-ima 5602 . . . . . . . . . . 11 (𝐺 “ ((𝐵𝑟)(,)𝐵)) = ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵))
120 imass2 6010 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
12191, 120syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
122119, 121eqsstrrid 3970 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)) ⊆ (𝐺𝐷))
123 lhop.gn0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ (𝐺𝐷))
124123adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ (𝐺𝐷))
125122, 124ssneldd 3924 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))
126103rneqd 5847 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵)))
127 df-ima 5602 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) = ran ((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))
128126, 127eqtr4di 2796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) = ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)))
129 imass2 6010 . . . . . . . . . . . 12 (((𝐵𝑟)(,)𝐵) ⊆ 𝐷 → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
13091, 129syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ ((𝐵𝑟)(,)𝐵)) ⊆ ((ℝ D 𝐺) “ 𝐷))
131128, 130eqsstrd 3959 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))) ⊆ ((ℝ D 𝐺) “ 𝐷))
132 lhop.gd0 . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
133132adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷))
134131, 133ssneldd 3924 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵))))
135 limcresi 25049 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵)
13691resmptd 5948 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
13789fveq1d 6776 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
138 fvres 6793 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐹) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
139137, 138sylan9eq 2798 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
140103fveq1d 6776 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))
141 fvres 6793 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((ℝ D 𝐺) ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
142140, 141sylan9eq 2798 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
143139, 142oveq12d 7293 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ ((𝐵𝑟)(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
144143mpteq2dva 5174 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
145136, 144eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))))
146145oveq1d 7290 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
147135, 146sseqtrid 3973 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
148 lhop.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
149148adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
150147, 149sseldd 3922 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧) / ((ℝ D (𝐺 ↾ ((𝐵𝑟)(,)𝐵)))‘𝑧))) lim 𝐵))
15123, 19, 24, 71, 74, 96, 110, 114, 118, 125, 134, 150lhop2 25179 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
15255resmptd 5948 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
153 fvres 6793 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐹𝑧))
154 fvres 6793 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) = (𝐺𝑧))
155153, 154oveq12d 7293 . . . . . . . . . . 11 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) → (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
156155mpteq2ia 5177 . . . . . . . . . 10 (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
157152, 156eqtr4di 2796 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) = (𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))))
158157oveq1d 7290 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) = ((𝑧 ∈ ((𝐵𝑟)(,)𝐵) ↦ (((𝐹 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧) / ((𝐺 ↾ ((𝐵𝑟)(,)𝐵))‘𝑧))) lim 𝐵))
159151, 158eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵))
160 ssun2 4107 . . . . . . . . . . . 12 (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))
161160, 54sseqtrrid 3974 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}))
162161, 69sstrd 3931 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐴)
16326, 162fssresd 6641 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
16473, 162fssresd 6641 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))):(𝐵(,)(𝐵 + 𝑟))⟶ℝ)
165 ioossre 13140 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ
166165a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)
16780, 81dvres 25075 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
16875, 76, 77, 166, 167syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
169 iooretop 23929 . . . . . . . . . . . . . 14 (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
170 isopn3i 22233 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (𝐵(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
17184, 169, 170mp2an 689 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟))
172171reseq2i 5888 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))
173168, 172eqtrdi 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
174173dmeqd 5814 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))))
175161, 59sstrd 3931 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷)
176175, 92sstrd 3931 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹))
177 ssdmres 5914 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
178176, 177sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
179174, 178eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
18080, 81dvres 25075 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)(𝐵 + 𝑟)) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
18175, 99, 77, 166, 180syl22anc 836 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))))
182171reseq2i 5888 . . . . . . . . . . . 12 ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
183181, 182eqtrdi 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
184183dmeqd 5814 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
185175, 106sstrd 3931 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺))
186 ssdmres 5914 . . . . . . . . . . 11 ((𝐵(,)(𝐵 + 𝑟)) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
187185, 186sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝐵(,)(𝐵 + 𝑟)))
188184, 187eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → dom (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = (𝐵(,)(𝐵 + 𝑟)))
189 limcresi 25049 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
190189, 113sselid 3919 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
191 limcresi 25049 . . . . . . . . . 10 (𝐺 lim 𝐵) ⊆ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
192191, 117sselid 3919 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 0 ∈ ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
193 df-ima 5602 . . . . . . . . . . 11 (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) = ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))
194 imass2 6010 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
195175, 194syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐺 “ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
196193, 195eqsstrrid 3970 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))) ⊆ (𝐺𝐷))
197196, 124ssneldd 3924 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))
198183rneqd 5847 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟))))
199 df-ima 5602 . . . . . . . . . . . 12 ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) = ran ((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))
200198, 199eqtr4di 2796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) = ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))))
201 imass2 6010 . . . . . . . . . . . 12 ((𝐵(,)(𝐵 + 𝑟)) ⊆ 𝐷 → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
202175, 201syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D 𝐺) “ (𝐵(,)(𝐵 + 𝑟))) ⊆ ((ℝ D 𝐺) “ 𝐷))
203200, 202eqsstrd 3959 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))) ⊆ ((ℝ D 𝐺) “ 𝐷))
204203, 133ssneldd 3924 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ¬ 0 ∈ ran (ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))))
205 limcresi 25049 . . . . . . . . . . 11 ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)
206175resmptd 5948 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
207173fveq1d 6776 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
208 fvres 6793 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐹) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
209207, 208sylan9eq 2798 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
210183fveq1d 6776 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))
211 fvres 6793 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((ℝ D 𝐺) ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
212210, 211sylan9eq 2798 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) = ((ℝ D 𝐺)‘𝑧))
213209, 212oveq12d 7293 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (𝐵(,)(𝐵 + 𝑟))) → (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧)) = (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
214213mpteq2dva 5174 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))))
215206, 214eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))))
216215oveq1d 7290 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
217205, 216sseqtrid 3973 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵) ⊆ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
218217, 149sseldd 3922 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((ℝ D (𝐹 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧) / ((ℝ D (𝐺 ↾ (𝐵(,)(𝐵 + 𝑟))))‘𝑧))) lim 𝐵))
21919, 34, 35, 163, 164, 179, 188, 190, 192, 197, 204, 218lhop1 25178 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
220161resmptd 5948 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧))))
221 fvres 6793 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐹𝑧))
222 fvres 6793 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) = (𝐺𝑧))
223221, 222oveq12d 7293 . . . . . . . . . . 11 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) → (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
224223mpteq2ia 5177 . . . . . . . . . 10 (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ ((𝐹𝑧) / (𝐺𝑧)))
225220, 224eqtr4di 2796 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) = (𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))))
226225oveq1d 7290 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵) = ((𝑧 ∈ (𝐵(,)(𝐵 + 𝑟)) ↦ (((𝐹 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧) / ((𝐺 ↾ (𝐵(,)(𝐵 + 𝑟)))‘𝑧))) lim 𝐵))
227219, 226eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵))
228159, 227elind 4128 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
22959resmptd 5948 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) = (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))))
230229oveq1d 7290 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
23167sselda 3921 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → 𝑧𝐴)
23225ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
233231, 232syldan 591 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℝ)
234233recnd 11003 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ℂ)
23572ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
236231, 235syldan 591 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℝ)
237236recnd 11003 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ ℂ)
238123adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → ¬ 0 ∈ (𝐺𝐷))
23972ffnd 6601 . . . . . . . . . . . . . . . 16 (𝜑𝐺 Fn 𝐴)
240239adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐺 Fn 𝐴)
24167adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝐷𝐴)
242 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐷) → 𝑧𝐷)
243 fnfvima 7109 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐴𝐷𝐴𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
244240, 241, 242, 243syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐷) → (𝐺𝑧) ∈ (𝐺𝐷))
245 eleq1 2826 . . . . . . . . . . . . . 14 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ (𝐺𝐷) ↔ 0 ∈ (𝐺𝐷)))
246244, 245syl5ibcom 244 . . . . . . . . . . . . 13 ((𝜑𝑧𝐷) → ((𝐺𝑧) = 0 → 0 ∈ (𝐺𝐷)))
247246necon3bd 2957 . . . . . . . . . . . 12 ((𝜑𝑧𝐷) → (¬ 0 ∈ (𝐺𝐷) → (𝐺𝑧) ≠ 0))
248238, 247mpd 15 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → (𝐺𝑧) ≠ 0)
249234, 237, 248divcld 11751 . . . . . . . . . 10 ((𝜑𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
250249adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧𝐷) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
251250fmpttd 6989 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))):𝐷⟶ℂ)
252 difss 4066 . . . . . . . . . . 11 (𝐼 ∖ {𝐵}) ⊆ 𝐼
25358, 252eqsstri 3955 . . . . . . . . . 10 𝐷𝐼
25413, 61sstrdi 3933 . . . . . . . . . 10 (𝜑𝐼 ⊆ ℂ)
255253, 254sstrid 3932 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
256255adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐷 ⊆ ℂ)
257 eqid 2738 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))
25858uneq1i 4093 . . . . . . . . . . . . . . . . 17 (𝐷 ∪ {𝐵}) = ((𝐼 ∖ {𝐵}) ∪ {𝐵})
259 undif1 4409 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝐵}) ∪ {𝐵}) = (𝐼 ∪ {𝐵})
260258, 259eqtri 2766 . . . . . . . . . . . . . . . 16 (𝐷 ∪ {𝐵}) = (𝐼 ∪ {𝐵})
261 simprr 770 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)
26242, 261sstrd 3931 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → {𝐵} ⊆ 𝐼)
263 ssequn2 4117 . . . . . . . . . . . . . . . . 17 ({𝐵} ⊆ 𝐼 ↔ (𝐼 ∪ {𝐵}) = 𝐼)
264262, 263sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐼 ∪ {𝐵}) = 𝐼)
265260, 264eqtrid 2790 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐷 ∪ {𝐵}) = 𝐼)
266265oveq2d 7291 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t 𝐼))
26713adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℝ)
268 eqid 2738 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
26980, 268rerest 23967 . . . . . . . . . . . . . . 15 (𝐼 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
270267, 269syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) = ((topGen‘ran (,)) ↾t 𝐼))
271266, 270eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})) = ((topGen‘ran (,)) ↾t 𝐼))
272271fveq2d 6778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵}))) = (int‘((topGen‘ran (,)) ↾t 𝐼)))
273272fveq1d 6776 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
27480cnfldtopon 23946 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
275254adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ⊆ ℂ)
276 resttopon 22312 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐼 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
277274, 275, 276sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼))
278 topontop 22062 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ↾t 𝐼) ∈ (TopOn‘𝐼) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
279277, 278syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((TopOpen‘ℂfld) ↾t 𝐼) ∈ Top)
280270, 279eqeltrrd 2840 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((topGen‘ran (,)) ↾t 𝐼) ∈ Top)
281 iooretop 23929 . . . . . . . . . . . . . 14 ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,))
282281a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)))
2834adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐼 ∈ (topGen‘ran (,)))
284 restopn2 22328 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ 𝐼 ∈ (topGen‘ran (,))) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
28584, 283, 284sylancr 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ (topGen‘ran (,)) ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)))
286282, 261, 285mpbir2and 710 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼))
287 isopn3i 22233 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐼) ∈ Top ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ∈ ((topGen‘ran (,)) ↾t 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
288280, 286, 287syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((topGen‘ran (,)) ↾t 𝐼))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
289273, 288eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29041, 289eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
291 undif1 4409 . . . . . . . . . . 11 ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵})
292 ssequn2 4117 . . . . . . . . . . . 12 ({𝐵} ⊆ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ↔ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
29342, 292sylib 217 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
294291, 293eqtrid 2790 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵}) = ((𝐵𝑟)(,)(𝐵 + 𝑟)))
295294fveq2d 6778 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((𝐵𝑟)(,)(𝐵 + 𝑟))))
296290, 295eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐷 ∪ {𝐵})))‘((((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ∪ {𝐵})))
297251, 59, 256, 80, 257, 296limcres 25050 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) lim 𝐵) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
29878, 61sstri 3930 . . . . . . . . 9 ((𝐵𝑟)(,)𝐵) ⊆ ℂ
299298a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝐵𝑟)(,)𝐵) ⊆ ℂ)
300165, 61sstri 3930 . . . . . . . . 9 (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ
301300a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝐵(,)(𝐵 + 𝑟)) ⊆ ℂ)
30259sselda 3921 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → 𝑧𝐷)
303302, 250syldan 591 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) ∧ 𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
304303fmpttd 6989 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ)
30554feq2d 6586 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵})⟶ℂ ↔ (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ))
306304, 305mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → (𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))):(((𝐵𝑟)(,)𝐵) ∪ (𝐵(,)(𝐵 + 𝑟)))⟶ℂ)
307299, 301, 306limcun 25059 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵) = ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)))
308230, 297, 3073eqtr3rd 2787 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → ((((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ ((𝐵𝑟)(,)𝐵)) lim 𝐵) ∩ (((𝑧 ∈ (((𝐵𝑟)(,)(𝐵 + 𝑟)) ∖ {𝐵}) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝐵(,)(𝐵 + 𝑟))) lim 𝐵)) = ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
309228, 308eleqtrd 2841 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ ((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼)) → 𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
310309expr 457 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (((𝐵𝑟)(,)(𝐵 + 𝑟)) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
31118, 310sylbid 239 . . 3 ((𝜑𝑟 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
312311rexlimdva 3213 . 2 (𝜑 → (∃𝑟 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐼𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵)))
3139, 312mpd 15 1 (𝜑𝐶 ∈ ((𝑧𝐷 ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874  *cxr 11008   < clt 11009  cmin 11205   / cdiv 11632  +crp 12730  (,)cioo 13079  abscabs 14945  t crest 17131  TopOpenctopn 17132  topGenctg 17148  ∞Metcxmet 20582  ballcbl 20584  MetOpencmopn 20587  fldccnfld 20597  Topctop 22042  TopOnctopon 22059  intcnt 22168   lim climc 25026   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  taylthlem2  25533  dirkercncflem2  43645  fourierdlem62  43709
  Copyright terms: Public domain W3C validator