![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
preq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
preq12i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | preq12 4740 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: grpbasex 17337 grpplusgx 17338 indistpsx 23033 lgsdir2lem5 27388 negs1s 28074 wlk2v2elem2 30185 tgrpset 40728 stgr0 47863 stgr1 47864 zlmodzxzadd 48203 zlmodzxzequa 48342 zlmodzxzequap 48345 |
Copyright terms: Public domain | W3C validator |