| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| preq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| preq12i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | preq12 4683 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cpr 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4572 df-pr 4574 |
| This theorem is referenced by: grpbasex 17191 grpplusgx 17192 indistpsx 22920 lgsdir2lem5 27262 negs1s 27964 wlk2v2elem2 30128 tgrpset 40784 nregmodelf1o 45048 stgr0 47991 stgr1 47992 gpgprismgr4cycllem10 48135 grlimedgnedg 48162 zlmodzxzadd 48389 zlmodzxzequa 48528 zlmodzxzequap 48531 |
| Copyright terms: Public domain | W3C validator |