MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12i Structured version   Visualization version   GIF version

Theorem preq12i 4686
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1 𝐴 = 𝐵
preq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
preq12i {𝐴, 𝐶} = {𝐵, 𝐷}

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2 𝐴 = 𝐵
2 preq12i.2 . 2 𝐶 = 𝐷
3 preq12 4683 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷})
41, 2, 3mp2an 692 1 {𝐴, 𝐶} = {𝐵, 𝐷}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cpr 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4572  df-pr 4574
This theorem is referenced by:  grpbasex  17191  grpplusgx  17192  indistpsx  22920  lgsdir2lem5  27262  negs1s  27964  wlk2v2elem2  30128  tgrpset  40784  nregmodelf1o  45048  stgr0  47991  stgr1  47992  gpgprismgr4cycllem10  48135  grlimedgnedg  48162  zlmodzxzadd  48389  zlmodzxzequa  48528  zlmodzxzequap  48531
  Copyright terms: Public domain W3C validator