![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
preq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
preq12i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | preq12 4734 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 {cpr 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-un 3948 df-sn 4624 df-pr 4626 |
This theorem is referenced by: grpbasex 17243 grpplusgx 17244 indistpsx 22864 lgsdir2lem5 27213 wlk2v2elem2 29914 tgrpset 40127 zlmodzxzadd 47291 zlmodzxzequa 47433 zlmodzxzequap 47436 |
Copyright terms: Public domain | W3C validator |