Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq12i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
preq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
preq12i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | preq12 4668 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: grpbasex 16927 grpplusgx 16928 indistpsx 22068 lgsdir2lem5 26382 wlk2v2elem2 28421 tgrpset 38686 zlmodzxzadd 45582 zlmodzxzequa 45725 zlmodzxzequap 45728 |
Copyright terms: Public domain | W3C validator |