Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12i Structured version   Visualization version   GIF version

Theorem preq12i 4629
 Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1 𝐴 = 𝐵
preq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
preq12i {𝐴, 𝐶} = {𝐵, 𝐷}

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2 𝐴 = 𝐵
2 preq12i.2 . 2 𝐶 = 𝐷
3 preq12 4626 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷})
41, 2, 3mp2an 692 1 {𝐴, 𝐶} = {𝐵, 𝐷}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1539  {cpr 4522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-v 3412  df-un 3864  df-sn 4521  df-pr 4523 This theorem is referenced by:  grpbasex  16661  grpplusgx  16662  indistpsx  21700  lgsdir2lem5  26002  wlk2v2elem2  28030  tgrpset  38311  zlmodzxzadd  45117  zlmodzxzequa  45260  zlmodzxzequap  45263
 Copyright terms: Public domain W3C validator