Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq12i | Structured version Visualization version GIF version |
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1i.1 | ⊢ 𝐴 = 𝐵 |
preq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
preq12i | ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | preq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | preq12 4626 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-un 3864 df-sn 4521 df-pr 4523 |
This theorem is referenced by: grpbasex 16661 grpplusgx 16662 indistpsx 21700 lgsdir2lem5 26002 wlk2v2elem2 28030 tgrpset 38311 zlmodzxzadd 45117 zlmodzxzequa 45260 zlmodzxzequap 45263 |
Copyright terms: Public domain | W3C validator |