Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzadd Structured version   Visualization version   GIF version

Theorem zlmodzxzadd 44400
Description: The addition of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzadd.p + = (+g𝑍)
Assertion
Ref Expression
zlmodzxzadd (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})

Proof of Theorem zlmodzxzadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
2 eqid 2821 . . 3 (Base‘𝑍) = (Base‘𝑍)
3 zringring 20614 . . . 4 ring ∈ Ring
43a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ℤring ∈ Ring)
5 prex 5324 . . . 4 {0, 1} ∈ V
65a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {0, 1} ∈ V)
7 simpl 485 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 simpl 485 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
91zlmodzxzel 44397 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
107, 8, 9syl2an 597 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
11 simpr 487 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
12 simpr 487 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
131zlmodzxzel 44397 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
1411, 12, 13syl2an 597 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
15 eqid 2821 . . 3 (+g‘ℤring) = (+g‘ℤring)
16 zlmodzxzadd.p . . 3 + = (+g𝑍)
171, 2, 4, 6, 10, 14, 15, 16frlmplusgval 20902 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}))
18 c0ex 10629 . . . . . 6 0 ∈ V
19 1ex 10631 . . . . . 6 1 ∈ V
2018, 19pm3.2i 473 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
2120a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (0 ∈ V ∧ 1 ∈ V))
227, 8anim12i 614 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
23 0ne1 11702 . . . . 5 0 ≠ 1
2423a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ≠ 1)
25 fnprg 6407 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2621, 22, 24, 25syl3anc 1367 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2711, 12anim12i 614 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ))
28 fnprg 6407 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
2921, 27, 24, 28syl3anc 1367 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
306, 26, 29offvalfv 44385 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
31 zringplusg 20618 . . . . . . 7 + = (+g‘ℤring)
3231eqcomi 2830 . . . . . 6 (+g‘ℤring) = +
3332oveqi 7163 . . . . 5 (𝐴(+g‘ℤring)𝐵) = (𝐴 + 𝐵)
3433opeq2i 4800 . . . 4 ⟨0, (𝐴(+g‘ℤring)𝐵)⟩ = ⟨0, (𝐴 + 𝐵)⟩
3532oveqi 7163 . . . . 5 (𝐶(+g‘ℤring)𝐷) = (𝐶 + 𝐷)
3635opeq2i 4800 . . . 4 ⟨1, (𝐶(+g‘ℤring)𝐷)⟩ = ⟨1, (𝐶 + 𝐷)⟩
3734, 36preq12i 4667 . . 3 {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩}
3818a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ∈ V)
3919a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 1 ∈ V)
40 ovexd 7185 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴(+g‘ℤring)𝐵) ∈ V)
41 ovexd 7185 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐶(+g‘ℤring)𝐷) ∈ V)
42 fveq2 6664 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0))
43 fveq2 6664 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0))
4442, 43oveq12d 7168 . . . . 5 (𝑥 = 0 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)))
457adantr 483 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐴 ∈ ℤ)
46 fvpr1g 6948 . . . . . . 7 ((0 ∈ V ∧ 𝐴 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4738, 45, 24, 46syl3anc 1367 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4811adantr 483 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐵 ∈ ℤ)
49 fvpr1g 6948 . . . . . . 7 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
5038, 48, 24, 49syl3anc 1367 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
5147, 50oveq12d 7168 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)) = (𝐴(+g‘ℤring)𝐵))
5244, 51sylan9eqr 2878 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 0) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐴(+g‘ℤring)𝐵))
53 fveq2 6664 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1))
54 fveq2 6664 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1))
5553, 54oveq12d 7168 . . . . 5 (𝑥 = 1 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)))
568adantl 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐶 ∈ ℤ)
57 fvpr2g 6949 . . . . . . 7 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5839, 56, 24, 57syl3anc 1367 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5912adantl 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐷 ∈ ℤ)
60 fvpr2g 6949 . . . . . . 7 ((1 ∈ V ∧ 𝐷 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
6139, 59, 24, 60syl3anc 1367 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
6258, 61oveq12d 7168 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)) = (𝐶(+g‘ℤring)𝐷))
6355, 62sylan9eqr 2878 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 1) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐶(+g‘ℤring)𝐷))
6438, 39, 40, 41, 52, 63fmptpr 6928 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
6537, 64syl5reqr 2871 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
6617, 30, 653eqtrd 2860 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  {cpr 4562  cop 4566  cmpt 5138   Fn wfn 6344  cfv 6349  (class class class)co 7150  f cof 7401  0cc0 10531  1c1 10532   + caddc 10534  cz 11975  Basecbs 16477  +gcplusg 16559  Ringcrg 19291  ringzring 20611   freeLMod cfrlm 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-pws 16717  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-sra 19938  df-rgmod 19939  df-cnfld 20540  df-zring 20612  df-dsmm 20870  df-frlm 20885
This theorem is referenced by:  zlmodzxzsub  44402  zlmodzxzequap  44548
  Copyright terms: Public domain W3C validator