Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzadd Structured version   Visualization version   GIF version

Theorem zlmodzxzadd 46520
Description: The addition of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzadd.p + = (+g𝑍)
Assertion
Ref Expression
zlmodzxzadd (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})

Proof of Theorem zlmodzxzadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
2 eqid 2733 . . 3 (Base‘𝑍) = (Base‘𝑍)
3 zringring 20888 . . . 4 ring ∈ Ring
43a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ℤring ∈ Ring)
5 prex 5390 . . . 4 {0, 1} ∈ V
65a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {0, 1} ∈ V)
7 simpl 484 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 simpl 484 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
91zlmodzxzel 46517 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
107, 8, 9syl2an 597 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
11 simpr 486 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
12 simpr 486 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
131zlmodzxzel 46517 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
1411, 12, 13syl2an 597 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
15 eqid 2733 . . 3 (+g‘ℤring) = (+g‘ℤring)
16 zlmodzxzadd.p . . 3 + = (+g𝑍)
171, 2, 4, 6, 10, 14, 15, 16frlmplusgval 21186 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}))
18 c0ex 11154 . . . . . 6 0 ∈ V
19 1ex 11156 . . . . . 6 1 ∈ V
2018, 19pm3.2i 472 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
2120a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (0 ∈ V ∧ 1 ∈ V))
227, 8anim12i 614 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
23 0ne1 12229 . . . . 5 0 ≠ 1
2423a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ≠ 1)
25 fnprg 6561 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2621, 22, 24, 25syl3anc 1372 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2711, 12anim12i 614 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ))
28 fnprg 6561 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
2921, 27, 24, 28syl3anc 1372 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
306, 26, 29offvalfv 46504 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
3118a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ∈ V)
3219a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 1 ∈ V)
33 ovexd 7393 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴(+g‘ℤring)𝐵) ∈ V)
34 ovexd 7393 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐶(+g‘ℤring)𝐷) ∈ V)
35 fveq2 6843 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0))
36 fveq2 6843 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0))
3735, 36oveq12d 7376 . . . . 5 (𝑥 = 0 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)))
387adantr 482 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐴 ∈ ℤ)
39 fvpr1g 7137 . . . . . . 7 ((0 ∈ V ∧ 𝐴 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4031, 38, 24, 39syl3anc 1372 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4111adantr 482 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐵 ∈ ℤ)
42 fvpr1g 7137 . . . . . . 7 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
4331, 41, 24, 42syl3anc 1372 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
4440, 43oveq12d 7376 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)) = (𝐴(+g‘ℤring)𝐵))
4537, 44sylan9eqr 2795 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 0) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐴(+g‘ℤring)𝐵))
46 fveq2 6843 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1))
47 fveq2 6843 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1))
4846, 47oveq12d 7376 . . . . 5 (𝑥 = 1 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)))
498adantl 483 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐶 ∈ ℤ)
50 fvpr2g 7138 . . . . . . 7 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5132, 49, 24, 50syl3anc 1372 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5212adantl 483 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐷 ∈ ℤ)
53 fvpr2g 7138 . . . . . . 7 ((1 ∈ V ∧ 𝐷 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
5432, 52, 24, 53syl3anc 1372 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
5551, 54oveq12d 7376 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)) = (𝐶(+g‘ℤring)𝐷))
5648, 55sylan9eqr 2795 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 1) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐶(+g‘ℤring)𝐷))
5731, 32, 33, 34, 45, 56fmptpr 7119 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
58 zringplusg 20892 . . . . . . 7 + = (+g‘ℤring)
5958eqcomi 2742 . . . . . 6 (+g‘ℤring) = +
6059oveqi 7371 . . . . 5 (𝐴(+g‘ℤring)𝐵) = (𝐴 + 𝐵)
6160opeq2i 4835 . . . 4 ⟨0, (𝐴(+g‘ℤring)𝐵)⟩ = ⟨0, (𝐴 + 𝐵)⟩
6259oveqi 7371 . . . . 5 (𝐶(+g‘ℤring)𝐷) = (𝐶 + 𝐷)
6362opeq2i 4835 . . . 4 ⟨1, (𝐶(+g‘ℤring)𝐷)⟩ = ⟨1, (𝐶 + 𝐷)⟩
6461, 63preq12i 4700 . . 3 {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩}
6557, 64eqtr3di 2788 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
6617, 30, 653eqtrd 2777 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  Vcvv 3444  {cpr 4589  cop 4593  cmpt 5189   Fn wfn 6492  cfv 6497  (class class class)co 7358  f cof 7616  0cc0 11056  1c1 11057   + caddc 11059  cz 12504  Basecbs 17088  +gcplusg 17138  Ringcrg 19969  ringczring 20885   freeLMod cfrlm 21168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-addf 11135  ax-mulf 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-starv 17153  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-unif 17161  df-hom 17162  df-cco 17163  df-0g 17328  df-prds 17334  df-pws 17336  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-minusg 18757  df-subg 18930  df-cmn 19569  df-mgp 19902  df-ur 19919  df-ring 19971  df-cring 19972  df-subrg 20234  df-sra 20649  df-rgmod 20650  df-cnfld 20813  df-zring 20886  df-dsmm 21154  df-frlm 21169
This theorem is referenced by:  zlmodzxzsub  46522  zlmodzxzequap  46666
  Copyright terms: Public domain W3C validator