Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzadd Structured version   Visualization version   GIF version

 Description: The addition of the ℤ-module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
Assertion
Ref Expression
zlmodzxzadd (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})

Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
2 eqid 2801 . . 3 (Base‘𝑍) = (Base‘𝑍)
3 zringring 20170 . . . 4 ring ∈ Ring
43a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ℤring ∈ Ring)
5 prex 5301 . . . 4 {0, 1} ∈ V
65a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {0, 1} ∈ V)
7 simpl 486 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 simpl 486 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
91zlmodzxzel 44754 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
107, 8, 9syl2an 598 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
11 simpr 488 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
12 simpr 488 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
131zlmodzxzel 44754 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
1411, 12, 13syl2an 598 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
15 eqid 2801 . . 3 (+g‘ℤring) = (+g‘ℤring)
16 zlmodzxzadd.p . . 3 + = (+g𝑍)
171, 2, 4, 6, 10, 14, 15, 16frlmplusgval 20457 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}))
18 c0ex 10628 . . . . . 6 0 ∈ V
19 1ex 10630 . . . . . 6 1 ∈ V
2018, 19pm3.2i 474 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
2120a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (0 ∈ V ∧ 1 ∈ V))
227, 8anim12i 615 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
23 0ne1 11700 . . . . 5 0 ≠ 1
2423a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ≠ 1)
25 fnprg 6387 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2621, 22, 24, 25syl3anc 1368 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2711, 12anim12i 615 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ))
28 fnprg 6387 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
2921, 27, 24, 28syl3anc 1368 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
306, 26, 29offvalfv 44741 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
31 zringplusg 20174 . . . . . . 7 + = (+g‘ℤring)
3231eqcomi 2810 . . . . . 6 (+g‘ℤring) = +
3332oveqi 7152 . . . . 5 (𝐴(+g‘ℤring)𝐵) = (𝐴 + 𝐵)
3433opeq2i 4772 . . . 4 ⟨0, (𝐴(+g‘ℤring)𝐵)⟩ = ⟨0, (𝐴 + 𝐵)⟩
3532oveqi 7152 . . . . 5 (𝐶(+g‘ℤring)𝐷) = (𝐶 + 𝐷)
3635opeq2i 4772 . . . 4 ⟨1, (𝐶(+g‘ℤring)𝐷)⟩ = ⟨1, (𝐶 + 𝐷)⟩
3734, 36preq12i 4637 . . 3 {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩}
3818a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ∈ V)
3919a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 1 ∈ V)
40 ovexd 7174 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴(+g‘ℤring)𝐵) ∈ V)
41 ovexd 7174 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐶(+g‘ℤring)𝐷) ∈ V)
42 fveq2 6649 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0))
43 fveq2 6649 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0))
4442, 43oveq12d 7157 . . . . 5 (𝑥 = 0 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)))
457adantr 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐴 ∈ ℤ)
46 fvpr1g 6935 . . . . . . 7 ((0 ∈ V ∧ 𝐴 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4738, 45, 24, 46syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4811adantr 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐵 ∈ ℤ)
49 fvpr1g 6935 . . . . . . 7 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
5038, 48, 24, 49syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
5147, 50oveq12d 7157 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)) = (𝐴(+g‘ℤring)𝐵))
5244, 51sylan9eqr 2858 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 0) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐴(+g‘ℤring)𝐵))
53 fveq2 6649 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1))
54 fveq2 6649 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1))
5553, 54oveq12d 7157 . . . . 5 (𝑥 = 1 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)))
568adantl 485 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐶 ∈ ℤ)
57 fvpr2g 6936 . . . . . . 7 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5839, 56, 24, 57syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5912adantl 485 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐷 ∈ ℤ)
60 fvpr2g 6936 . . . . . . 7 ((1 ∈ V ∧ 𝐷 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
6139, 59, 24, 60syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
6258, 61oveq12d 7157 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)) = (𝐶(+g‘ℤring)𝐷))
6355, 62sylan9eqr 2858 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 1) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐶(+g‘ℤring)𝐷))
6438, 39, 40, 41, 52, 63fmptpr 6915 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
6537, 64syl5reqr 2851 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
6617, 30, 653eqtrd 2840 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  Vcvv 3444  {cpr 4530  ⟨cop 4534   ↦ cmpt 5113   Fn wfn 6323  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391  0cc0 10530  1c1 10531   + caddc 10533  ℤcz 11973  Basecbs 16479  +gcplusg 16561  Ringcrg 19294  ℤringzring 20167   freeLMod cfrlm 20439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-subg 18272  df-cmn 18904  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-subrg 19530  df-sra 19941  df-rgmod 19942  df-cnfld 20096  df-zring 20168  df-dsmm 20425  df-frlm 20440 This theorem is referenced by:  zlmodzxzsub  44759  zlmodzxzequap  44905
 Copyright terms: Public domain W3C validator