Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzadd Structured version   Visualization version   GIF version

Theorem zlmodzxzadd 48457
Description: The addition of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzadd.p + = (+g𝑍)
Assertion
Ref Expression
zlmodzxzadd (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})

Proof of Theorem zlmodzxzadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
2 eqid 2731 . . 3 (Base‘𝑍) = (Base‘𝑍)
3 zringring 21386 . . . 4 ring ∈ Ring
43a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ℤring ∈ Ring)
5 prex 5373 . . . 4 {0, 1} ∈ V
65a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {0, 1} ∈ V)
7 simpl 482 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 simpl 482 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
91zlmodzxzel 48454 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
107, 8, 9syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
11 simpr 484 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
12 simpr 484 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
131zlmodzxzel 48454 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
1411, 12, 13syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
15 eqid 2731 . . 3 (+g‘ℤring) = (+g‘ℤring)
16 zlmodzxzadd.p . . 3 + = (+g𝑍)
171, 2, 4, 6, 10, 14, 15, 16frlmplusgval 21701 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}))
18 c0ex 11106 . . . . . 6 0 ∈ V
19 1ex 11108 . . . . . 6 1 ∈ V
2018, 19pm3.2i 470 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
2120a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (0 ∈ V ∧ 1 ∈ V))
227, 8anim12i 613 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
23 0ne1 12196 . . . . 5 0 ≠ 1
2423a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ≠ 1)
25 fnprg 6540 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2621, 22, 24, 25syl3anc 1373 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} Fn {0, 1})
2711, 12anim12i 613 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ))
28 fnprg 6540 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
2921, 27, 24, 28syl3anc 1373 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} Fn {0, 1})
306, 26, 29offvalfv 7632 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∘f (+g‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
3118a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 0 ∈ V)
3219a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 1 ∈ V)
33 ovexd 7381 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴(+g‘ℤring)𝐵) ∈ V)
34 ovexd 7381 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐶(+g‘ℤring)𝐷) ∈ V)
35 fveq2 6822 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0))
36 fveq2 6822 . . . . . 6 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0))
3735, 36oveq12d 7364 . . . . 5 (𝑥 = 0 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)))
387adantr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐴 ∈ ℤ)
39 fvpr1g 7124 . . . . . . 7 ((0 ∈ V ∧ 𝐴 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4031, 38, 24, 39syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0) = 𝐴)
4111adantr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐵 ∈ ℤ)
42 fvpr1g 7124 . . . . . . 7 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
4331, 41, 24, 42syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0) = 𝐵)
4440, 43oveq12d 7364 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘0)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘0)) = (𝐴(+g‘ℤring)𝐵))
4537, 44sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 0) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐴(+g‘ℤring)𝐵))
46 fveq2 6822 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1))
47 fveq2 6822 . . . . . 6 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1))
4846, 47oveq12d 7364 . . . . 5 (𝑥 = 1 → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)))
498adantl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐶 ∈ ℤ)
50 fvpr2g 7125 . . . . . . 7 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5132, 49, 24, 50syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5212adantl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐷 ∈ ℤ)
53 fvpr2g 7125 . . . . . . 7 ((1 ∈ V ∧ 𝐷 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
5432, 52, 24, 53syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1) = 𝐷)
5551, 54oveq12d 7364 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘1)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘1)) = (𝐶(+g‘ℤring)𝐷))
5648, 55sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝑥 = 1) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥)) = (𝐶(+g‘ℤring)𝐷))
5731, 32, 33, 34, 45, 56fmptpr 7106 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))))
58 zringplusg 21391 . . . . . . 7 + = (+g‘ℤring)
5958eqcomi 2740 . . . . . 6 (+g‘ℤring) = +
6059oveqi 7359 . . . . 5 (𝐴(+g‘ℤring)𝐵) = (𝐴 + 𝐵)
6160opeq2i 4826 . . . 4 ⟨0, (𝐴(+g‘ℤring)𝐵)⟩ = ⟨0, (𝐴 + 𝐵)⟩
6259oveqi 7359 . . . . 5 (𝐶(+g‘ℤring)𝐷) = (𝐶 + 𝐷)
6362opeq2i 4826 . . . 4 ⟨1, (𝐶(+g‘ℤring)𝐷)⟩ = ⟨1, (𝐶 + 𝐷)⟩
6461, 63preq12i 4688 . . 3 {⟨0, (𝐴(+g‘ℤring)𝐵)⟩, ⟨1, (𝐶(+g‘ℤring)𝐷)⟩} = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩}
6557, 64eqtr3di 2781 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑥 ∈ {0, 1} ↦ (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩}‘𝑥)(+g‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐷⟩}‘𝑥))) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
6617, 30, 653eqtrd 2770 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} + {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴 + 𝐵)⟩, ⟨1, (𝐶 + 𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  {cpr 4575  cop 4579  cmpt 5170   Fn wfn 6476  cfv 6481  (class class class)co 7346  f cof 7608  0cc0 11006  1c1 11007   + caddc 11009  cz 12468  Basecbs 17120  +gcplusg 17161  Ringcrg 20151  ringczring 21383   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-zring 21384  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  zlmodzxzsub  48459  zlmodzxzequap  48599
  Copyright terms: Public domain W3C validator