Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4666 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: propeqop 5415 opthwiener 5422 fprg 7009 fprb 7051 fnpr2g 7068 dif1en 8907 dfac2b 9817 symg2bas 18915 crctcshwlkn0lem6 28081 wwlksnredwwlkn 28161 wwlksnextprop 28178 clwwlk1loop 28253 clwlkclwwlklem2fv1 28260 clwlkclwwlklem2fv2 28261 clwlkclwwlklem2a 28263 clwlkclwwlklem3 28266 clwwisshclwwslem 28279 clwwlknlbonbgr1 28304 clwwlkn1 28306 frcond1 28531 frgr1v 28536 nfrgr2v 28537 frgr3v 28540 n4cyclfrgr 28556 2clwwlk2clwwlklem 28611 wopprc 40768 mnurndlem1 41788 isomuspgrlem2d 45171 2arymaptf1 45887 rrx2xpref1o 45952 |
Copyright terms: Public domain | W3C validator |