| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq1 4687 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: propeqop 5454 opthwiener 5461 fprg 7093 fprb 7134 fnpr2g 7150 dif1en 9084 dif1enOLD 9086 dfac2b 10044 symg2bas 19290 crctcshwlkn0lem6 29778 wwlksnredwwlkn 29858 wwlksnextprop 29875 clwwlk1loop 29950 clwlkclwwlklem2fv1 29957 clwlkclwwlklem2fv2 29958 clwlkclwwlklem2a 29960 clwlkclwwlklem3 29963 clwwisshclwwslem 29976 clwwlknlbonbgr1 30001 clwwlkn1 30003 frcond1 30228 frgr1v 30233 nfrgr2v 30234 frgr3v 30237 n4cyclfrgr 30253 2clwwlk2clwwlklem 30308 wopprc 43003 mnurndlem1 44254 grtriclwlk3 47930 isubgr3stgrlem4 47954 gpgedgiov 48050 gpgedg2ov 48051 gpgedg2iv 48052 pgnbgreunbgrlem5lem1 48105 pgnbgreunbgrlem5lem2 48106 pgnbgreunbgrlem5lem3 48107 grlimedgnedg 48116 2arymaptf1 48639 rrx2xpref1o 48704 |
| Copyright terms: Public domain | W3C validator |