| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq1 4685 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cpr 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: propeqop 5450 opthwiener 5457 fprg 7094 fprb 7134 fnpr2g 7150 dif1en 9078 dfac2b 10029 symg2bas 19307 crctcshwlkn0lem6 29795 wwlksnredwwlkn 29875 wwlksnextprop 29892 clwwlk1loop 29970 clwlkclwwlklem2fv1 29977 clwlkclwwlklem2fv2 29978 clwlkclwwlklem2a 29980 clwlkclwwlklem3 29983 clwwisshclwwslem 29996 clwwlknlbonbgr1 30021 clwwlkn1 30023 frcond1 30248 frgr1v 30253 nfrgr2v 30254 frgr3v 30257 n4cyclfrgr 30273 2clwwlk2clwwlklem 30328 wopprc 43148 mnurndlem1 44399 grtriclwlk3 48070 isubgr3stgrlem4 48094 gpgedgiov 48190 gpgedg2ov 48191 gpgedg2iv 48192 pgnbgreunbgrlem5lem1 48245 pgnbgreunbgrlem5lem2 48246 pgnbgreunbgrlem5lem3 48247 grlimedgnedg 48256 2arymaptf1 48779 rrx2xpref1o 48844 |
| Copyright terms: Public domain | W3C validator |