| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq1 4697 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: propeqop 5467 opthwiener 5474 fprg 7127 fprb 7168 fnpr2g 7184 dif1en 9124 dif1enOLD 9126 dfac2b 10084 symg2bas 19323 crctcshwlkn0lem6 29745 wwlksnredwwlkn 29825 wwlksnextprop 29842 clwwlk1loop 29917 clwlkclwwlklem2fv1 29924 clwlkclwwlklem2fv2 29925 clwlkclwwlklem2a 29927 clwlkclwwlklem3 29930 clwwisshclwwslem 29943 clwwlknlbonbgr1 29968 clwwlkn1 29970 frcond1 30195 frgr1v 30200 nfrgr2v 30201 frgr3v 30204 n4cyclfrgr 30220 2clwwlk2clwwlklem 30275 wopprc 43019 mnurndlem1 44270 grtriclwlk3 47944 isubgr3stgrlem4 47968 gpgedgiov 48056 gpgedg2ov 48057 gpgedg2iv 48058 pgnbgreunbgrlem5lem1 48110 pgnbgreunbgrlem5lem2 48111 pgnbgreunbgrlem5lem3 48112 2arymaptf1 48642 rrx2xpref1o 48707 |
| Copyright terms: Public domain | W3C validator |