![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4758 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: propeqop 5526 opthwiener 5533 fprg 7189 fprb 7231 fnpr2g 7247 dif1en 9226 dif1enOLD 9228 dfac2b 10200 symg2bas 19434 crctcshwlkn0lem6 29848 wwlksnredwwlkn 29928 wwlksnextprop 29945 clwwlk1loop 30020 clwlkclwwlklem2fv1 30027 clwlkclwwlklem2fv2 30028 clwlkclwwlklem2a 30030 clwlkclwwlklem3 30033 clwwisshclwwslem 30046 clwwlknlbonbgr1 30071 clwwlkn1 30073 frcond1 30298 frgr1v 30303 nfrgr2v 30304 frgr3v 30307 n4cyclfrgr 30323 2clwwlk2clwwlklem 30378 wopprc 42987 mnurndlem1 44250 grtriclwlk3 47796 2arymaptf1 48387 rrx2xpref1o 48452 |
Copyright terms: Public domain | W3C validator |