Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4669 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: propeqop 5421 opthwiener 5428 fprg 7027 fprb 7069 fnpr2g 7086 dif1en 8945 dfac2b 9886 symg2bas 19000 crctcshwlkn0lem6 28180 wwlksnredwwlkn 28260 wwlksnextprop 28277 clwwlk1loop 28352 clwlkclwwlklem2fv1 28359 clwlkclwwlklem2fv2 28360 clwlkclwwlklem2a 28362 clwlkclwwlklem3 28365 clwwisshclwwslem 28378 clwwlknlbonbgr1 28403 clwwlkn1 28405 frcond1 28630 frgr1v 28635 nfrgr2v 28636 frgr3v 28639 n4cyclfrgr 28655 2clwwlk2clwwlklem 28710 wopprc 40852 mnurndlem1 41899 isomuspgrlem2d 45283 2arymaptf1 45999 rrx2xpref1o 46064 |
Copyright terms: Public domain | W3C validator |