| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq1 4686 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: propeqop 5447 opthwiener 5454 fprg 7088 fprb 7128 fnpr2g 7144 dif1en 9071 dfac2b 10019 symg2bas 19303 crctcshwlkn0lem6 29791 wwlksnredwwlkn 29871 wwlksnextprop 29888 clwwlk1loop 29963 clwlkclwwlklem2fv1 29970 clwlkclwwlklem2fv2 29971 clwlkclwwlklem2a 29973 clwlkclwwlklem3 29976 clwwisshclwwslem 29989 clwwlknlbonbgr1 30014 clwwlkn1 30016 frcond1 30241 frgr1v 30246 nfrgr2v 30247 frgr3v 30250 n4cyclfrgr 30266 2clwwlk2clwwlklem 30321 wopprc 43062 mnurndlem1 44313 grtriclwlk3 47975 isubgr3stgrlem4 47999 gpgedgiov 48095 gpgedg2ov 48096 gpgedg2iv 48097 pgnbgreunbgrlem5lem1 48150 pgnbgreunbgrlem5lem2 48151 pgnbgreunbgrlem5lem3 48152 grlimedgnedg 48161 2arymaptf1 48684 rrx2xpref1o 48749 |
| Copyright terms: Public domain | W3C validator |