| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq1 4714 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: propeqop 5487 opthwiener 5494 fprg 7150 fprb 7191 fnpr2g 7207 dif1en 9179 dif1enOLD 9181 dfac2b 10150 symg2bas 19379 crctcshwlkn0lem6 29802 wwlksnredwwlkn 29882 wwlksnextprop 29899 clwwlk1loop 29974 clwlkclwwlklem2fv1 29981 clwlkclwwlklem2fv2 29982 clwlkclwwlklem2a 29984 clwlkclwwlklem3 29987 clwwisshclwwslem 30000 clwwlknlbonbgr1 30025 clwwlkn1 30027 frcond1 30252 frgr1v 30257 nfrgr2v 30258 frgr3v 30261 n4cyclfrgr 30277 2clwwlk2clwwlklem 30332 wopprc 43021 mnurndlem1 44272 grtriclwlk3 47924 isubgr3stgrlem4 47948 2arymaptf1 48600 rrx2xpref1o 48665 |
| Copyright terms: Public domain | W3C validator |