![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4738 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: propeqop 5517 opthwiener 5524 fprg 7175 fprb 7214 fnpr2g 7230 dif1en 9199 dif1enOLD 9201 dfac2b 10169 symg2bas 19425 crctcshwlkn0lem6 29845 wwlksnredwwlkn 29925 wwlksnextprop 29942 clwwlk1loop 30017 clwlkclwwlklem2fv1 30024 clwlkclwwlklem2fv2 30025 clwlkclwwlklem2a 30027 clwlkclwwlklem3 30030 clwwisshclwwslem 30043 clwwlknlbonbgr1 30068 clwwlkn1 30070 frcond1 30295 frgr1v 30300 nfrgr2v 30301 frgr3v 30304 n4cyclfrgr 30320 2clwwlk2clwwlklem 30375 wopprc 43019 mnurndlem1 44277 grtriclwlk3 47850 isubgr3stgrlem4 47872 2arymaptf1 48503 rrx2xpref1o 48568 |
Copyright terms: Public domain | W3C validator |