![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4737 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-sn 4629 df-pr 4631 |
This theorem is referenced by: propeqop 5507 opthwiener 5514 fprg 7155 fprb 7197 fnpr2g 7214 dif1en 9166 dif1enOLD 9168 dfac2b 10131 symg2bas 19308 crctcshwlkn0lem6 29501 wwlksnredwwlkn 29581 wwlksnextprop 29598 clwwlk1loop 29673 clwlkclwwlklem2fv1 29680 clwlkclwwlklem2fv2 29681 clwlkclwwlklem2a 29683 clwlkclwwlklem3 29686 clwwisshclwwslem 29699 clwwlknlbonbgr1 29724 clwwlkn1 29726 frcond1 29951 frgr1v 29956 nfrgr2v 29957 frgr3v 29960 n4cyclfrgr 29976 2clwwlk2clwwlklem 30031 wopprc 42231 mnurndlem1 43502 isomuspgrlem2d 46957 2arymaptf1 47500 rrx2xpref1o 47565 |
Copyright terms: Public domain | W3C validator |