MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2elem2 Structured version   Visualization version   GIF version

Theorem wlk2v2elem2 27851
Description: Lemma 2 for wlk2v2e 27852: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
Assertion
Ref Expression
wlk2v2elem2 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem wlk2v2elem2
StepHypRef Expression
1 wlk2v2e.f . . . . . . 7 𝐹 = ⟨“00”⟩
21fveq1i 6667 . . . . . 6 (𝐹‘0) = (⟨“00”⟩‘0)
3 0z 11984 . . . . . . 7 0 ∈ ℤ
4 s2fv0 14242 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘0) = 0)
53, 4ax-mp 5 . . . . . 6 (⟨“00”⟩‘0) = 0
62, 5eqtri 2848 . . . . 5 (𝐹‘0) = 0
76fveq2i 6669 . . . 4 (𝐼‘(𝐹‘0)) = (𝐼‘0)
8 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
98fveq1i 6667 . . . . 5 (𝐼‘0) = (⟨“{𝑋, 𝑌}”⟩‘0)
10 prex 5328 . . . . . 6 {𝑋, 𝑌} ∈ V
11 s1fv 13957 . . . . . 6 ({𝑋, 𝑌} ∈ V → (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌})
1210, 11ax-mp 5 . . . . 5 (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌}
139, 12eqtri 2848 . . . 4 (𝐼‘0) = {𝑋, 𝑌}
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
1514fveq1i 6667 . . . . . . 7 (𝑃‘0) = (⟨“𝑋𝑌𝑋”⟩‘0)
16 wlk2v2e.x . . . . . . . 8 𝑋 ∈ V
17 s3fv0 14246 . . . . . . . 8 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋)
1816, 17ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋
1915, 18eqtri 2848 . . . . . 6 (𝑃‘0) = 𝑋
2014fveq1i 6667 . . . . . . 7 (𝑃‘1) = (⟨“𝑋𝑌𝑋”⟩‘1)
21 wlk2v2e.y . . . . . . . 8 𝑌 ∈ V
22 s3fv1 14247 . . . . . . . 8 (𝑌 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌)
2321, 22ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌
2420, 23eqtri 2848 . . . . . 6 (𝑃‘1) = 𝑌
2519, 24preq12i 4672 . . . . 5 {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌}
2625eqcomi 2834 . . . 4 {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)}
277, 13, 263eqtri 2852 . . 3 (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}
281fveq1i 6667 . . . . . 6 (𝐹‘1) = (⟨“00”⟩‘1)
29 s2fv1 14243 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘1) = 0)
303, 29ax-mp 5 . . . . . 6 (⟨“00”⟩‘1) = 0
3128, 30eqtri 2848 . . . . 5 (𝐹‘1) = 0
3231fveq2i 6669 . . . 4 (𝐼‘(𝐹‘1)) = (𝐼‘0)
33 prcom 4666 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
3414fveq1i 6667 . . . . . . . 8 (𝑃‘2) = (⟨“𝑋𝑌𝑋”⟩‘2)
35 s3fv2 14248 . . . . . . . . 9 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋)
3616, 35ax-mp 5 . . . . . . . 8 (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋
3734, 36eqtri 2848 . . . . . . 7 (𝑃‘2) = 𝑋
3824, 37preq12i 4672 . . . . . 6 {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋}
3938eqcomi 2834 . . . . 5 {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)}
4033, 39eqtri 2848 . . . 4 {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)}
4132, 13, 403eqtri 2852 . . 3 (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}
42 2wlklem 27365 . . 3 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
4327, 41, 42mpbir2an 707 . 2 𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4414, 12wlkdlem2 27621 . . 3 (0..^(♯‘𝐹)) = {0, 1}
4544raleqi 3418 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
4643, 45mpbir 232 1 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2107  wral 3142  Vcvv 3499  {cpr 4565  cfv 6351  (class class class)co 7151  0cc0 10529  1c1 10530   + caddc 10532  2c2 11684  cz 11973  ..^cfzo 13026  chash 13683  ⟨“cs1 13942  ⟨“cs2 14196  ⟨“cs3 14197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-hash 13684  df-word 13855  df-concat 13916  df-s1 13943  df-s2 14203  df-s3 14204
This theorem is referenced by:  wlk2v2e  27852
  Copyright terms: Public domain W3C validator