MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2elem2 Structured version   Visualization version   GIF version

Theorem wlk2v2elem2 30188
Description: Lemma 2 for wlk2v2e 30189: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
Assertion
Ref Expression
wlk2v2elem2 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem wlk2v2elem2
StepHypRef Expression
1 wlk2v2e.f . . . . . . 7 𝐹 = ⟨“00”⟩
21fveq1i 6921 . . . . . 6 (𝐹‘0) = (⟨“00”⟩‘0)
3 0z 12650 . . . . . . 7 0 ∈ ℤ
4 s2fv0 14936 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘0) = 0)
53, 4ax-mp 5 . . . . . 6 (⟨“00”⟩‘0) = 0
62, 5eqtri 2768 . . . . 5 (𝐹‘0) = 0
76fveq2i 6923 . . . 4 (𝐼‘(𝐹‘0)) = (𝐼‘0)
8 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
98fveq1i 6921 . . . . 5 (𝐼‘0) = (⟨“{𝑋, 𝑌}”⟩‘0)
10 prex 5452 . . . . . 6 {𝑋, 𝑌} ∈ V
11 s1fv 14658 . . . . . 6 ({𝑋, 𝑌} ∈ V → (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌})
1210, 11ax-mp 5 . . . . 5 (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌}
139, 12eqtri 2768 . . . 4 (𝐼‘0) = {𝑋, 𝑌}
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
1514fveq1i 6921 . . . . . . 7 (𝑃‘0) = (⟨“𝑋𝑌𝑋”⟩‘0)
16 wlk2v2e.x . . . . . . . 8 𝑋 ∈ V
17 s3fv0 14940 . . . . . . . 8 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋)
1816, 17ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋
1915, 18eqtri 2768 . . . . . 6 (𝑃‘0) = 𝑋
2014fveq1i 6921 . . . . . . 7 (𝑃‘1) = (⟨“𝑋𝑌𝑋”⟩‘1)
21 wlk2v2e.y . . . . . . . 8 𝑌 ∈ V
22 s3fv1 14941 . . . . . . . 8 (𝑌 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌)
2321, 22ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌
2420, 23eqtri 2768 . . . . . 6 (𝑃‘1) = 𝑌
2519, 24preq12i 4763 . . . . 5 {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌}
2625eqcomi 2749 . . . 4 {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)}
277, 13, 263eqtri 2772 . . 3 (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}
281fveq1i 6921 . . . . . 6 (𝐹‘1) = (⟨“00”⟩‘1)
29 s2fv1 14937 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘1) = 0)
303, 29ax-mp 5 . . . . . 6 (⟨“00”⟩‘1) = 0
3128, 30eqtri 2768 . . . . 5 (𝐹‘1) = 0
3231fveq2i 6923 . . . 4 (𝐼‘(𝐹‘1)) = (𝐼‘0)
33 prcom 4757 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
3414fveq1i 6921 . . . . . . . 8 (𝑃‘2) = (⟨“𝑋𝑌𝑋”⟩‘2)
35 s3fv2 14942 . . . . . . . . 9 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋)
3616, 35ax-mp 5 . . . . . . . 8 (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋
3734, 36eqtri 2768 . . . . . . 7 (𝑃‘2) = 𝑋
3824, 37preq12i 4763 . . . . . 6 {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋}
3938eqcomi 2749 . . . . 5 {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)}
4033, 39eqtri 2768 . . . 4 {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)}
4132, 13, 403eqtri 2772 . . 3 (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}
42 2wlklem 29703 . . 3 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
4327, 41, 42mpbir2an 710 . 2 𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4414, 12wlkdlem2 29959 . . 3 (0..^(♯‘𝐹)) = {0, 1}
4544raleqi 3332 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
4643, 45mpbir 231 1 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {cpr 4650  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  2c2 12348  cz 12639  ..^cfzo 13711  chash 14379  ⟨“cs1 14643  ⟨“cs2 14890  ⟨“cs3 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898
This theorem is referenced by:  wlk2v2e  30189
  Copyright terms: Public domain W3C validator