| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlk2v2elem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for wlk2v2e 30093: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
| wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
| wlk2v2e.x | ⊢ 𝑋 ∈ V |
| wlk2v2e.y | ⊢ 𝑌 ∈ V |
| wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
| Ref | Expression |
|---|---|
| wlk2v2elem2 | ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = 〈“00”〉 | |
| 2 | 1 | fveq1i 6862 | . . . . . 6 ⊢ (𝐹‘0) = (〈“00”〉‘0) |
| 3 | 0z 12547 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 4 | s2fv0 14860 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘0) = 0) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘0) = 0 |
| 6 | 2, 5 | eqtri 2753 | . . . . 5 ⊢ (𝐹‘0) = 0 |
| 7 | 6 | fveq2i 6864 | . . . 4 ⊢ (𝐼‘(𝐹‘0)) = (𝐼‘0) |
| 8 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
| 9 | 8 | fveq1i 6862 | . . . . 5 ⊢ (𝐼‘0) = (〈“{𝑋, 𝑌}”〉‘0) |
| 10 | prex 5395 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
| 11 | s1fv 14582 | . . . . . 6 ⊢ ({𝑋, 𝑌} ∈ V → (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌} |
| 13 | 9, 12 | eqtri 2753 | . . . 4 ⊢ (𝐼‘0) = {𝑋, 𝑌} |
| 14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
| 15 | 14 | fveq1i 6862 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝑋𝑌𝑋”〉‘0) |
| 16 | wlk2v2e.x | . . . . . . . 8 ⊢ 𝑋 ∈ V | |
| 17 | s3fv0 14864 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘0) = 𝑋) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘0) = 𝑋 |
| 19 | 15, 18 | eqtri 2753 | . . . . . 6 ⊢ (𝑃‘0) = 𝑋 |
| 20 | 14 | fveq1i 6862 | . . . . . . 7 ⊢ (𝑃‘1) = (〈“𝑋𝑌𝑋”〉‘1) |
| 21 | wlk2v2e.y | . . . . . . . 8 ⊢ 𝑌 ∈ V | |
| 22 | s3fv1 14865 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (〈“𝑋𝑌𝑋”〉‘1) = 𝑌) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘1) = 𝑌 |
| 24 | 20, 23 | eqtri 2753 | . . . . . 6 ⊢ (𝑃‘1) = 𝑌 |
| 25 | 19, 24 | preq12i 4705 | . . . . 5 ⊢ {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌} |
| 26 | 25 | eqcomi 2739 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)} |
| 27 | 7, 13, 26 | 3eqtri 2757 | . . 3 ⊢ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} |
| 28 | 1 | fveq1i 6862 | . . . . . 6 ⊢ (𝐹‘1) = (〈“00”〉‘1) |
| 29 | s2fv1 14861 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘1) = 0) | |
| 30 | 3, 29 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘1) = 0 |
| 31 | 28, 30 | eqtri 2753 | . . . . 5 ⊢ (𝐹‘1) = 0 |
| 32 | 31 | fveq2i 6864 | . . . 4 ⊢ (𝐼‘(𝐹‘1)) = (𝐼‘0) |
| 33 | prcom 4699 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 34 | 14 | fveq1i 6862 | . . . . . . . 8 ⊢ (𝑃‘2) = (〈“𝑋𝑌𝑋”〉‘2) |
| 35 | s3fv2 14866 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘2) = 𝑋) | |
| 36 | 16, 35 | ax-mp 5 | . . . . . . . 8 ⊢ (〈“𝑋𝑌𝑋”〉‘2) = 𝑋 |
| 37 | 34, 36 | eqtri 2753 | . . . . . . 7 ⊢ (𝑃‘2) = 𝑋 |
| 38 | 24, 37 | preq12i 4705 | . . . . . 6 ⊢ {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋} |
| 39 | 38 | eqcomi 2739 | . . . . 5 ⊢ {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)} |
| 40 | 33, 39 | eqtri 2753 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)} |
| 41 | 32, 13, 40 | 3eqtri 2757 | . . 3 ⊢ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} |
| 42 | 2wlklem 29602 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | |
| 43 | 27, 41, 42 | mpbir2an 711 | . 2 ⊢ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| 44 | 14, 1 | 2wlkdlem2 29863 | . . 3 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
| 45 | 44 | raleqi 3299 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 46 | 43, 45 | mpbir 231 | 1 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {cpr 4594 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 2c2 12248 ℤcz 12536 ..^cfzo 13622 ♯chash 14302 〈“cs1 14567 〈“cs2 14814 〈“cs3 14815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 |
| This theorem is referenced by: wlk2v2e 30093 |
| Copyright terms: Public domain | W3C validator |