MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2elem2 Structured version   Visualization version   GIF version

Theorem wlk2v2elem2 30175
Description: Lemma 2 for wlk2v2e 30176: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
Assertion
Ref Expression
wlk2v2elem2 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem wlk2v2elem2
StepHypRef Expression
1 wlk2v2e.f . . . . . . 7 𝐹 = ⟨“00”⟩
21fveq1i 6907 . . . . . 6 (𝐹‘0) = (⟨“00”⟩‘0)
3 0z 12624 . . . . . . 7 0 ∈ ℤ
4 s2fv0 14926 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘0) = 0)
53, 4ax-mp 5 . . . . . 6 (⟨“00”⟩‘0) = 0
62, 5eqtri 2765 . . . . 5 (𝐹‘0) = 0
76fveq2i 6909 . . . 4 (𝐼‘(𝐹‘0)) = (𝐼‘0)
8 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
98fveq1i 6907 . . . . 5 (𝐼‘0) = (⟨“{𝑋, 𝑌}”⟩‘0)
10 prex 5437 . . . . . 6 {𝑋, 𝑌} ∈ V
11 s1fv 14648 . . . . . 6 ({𝑋, 𝑌} ∈ V → (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌})
1210, 11ax-mp 5 . . . . 5 (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌}
139, 12eqtri 2765 . . . 4 (𝐼‘0) = {𝑋, 𝑌}
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
1514fveq1i 6907 . . . . . . 7 (𝑃‘0) = (⟨“𝑋𝑌𝑋”⟩‘0)
16 wlk2v2e.x . . . . . . . 8 𝑋 ∈ V
17 s3fv0 14930 . . . . . . . 8 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋)
1816, 17ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋
1915, 18eqtri 2765 . . . . . 6 (𝑃‘0) = 𝑋
2014fveq1i 6907 . . . . . . 7 (𝑃‘1) = (⟨“𝑋𝑌𝑋”⟩‘1)
21 wlk2v2e.y . . . . . . . 8 𝑌 ∈ V
22 s3fv1 14931 . . . . . . . 8 (𝑌 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌)
2321, 22ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌
2420, 23eqtri 2765 . . . . . 6 (𝑃‘1) = 𝑌
2519, 24preq12i 4738 . . . . 5 {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌}
2625eqcomi 2746 . . . 4 {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)}
277, 13, 263eqtri 2769 . . 3 (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}
281fveq1i 6907 . . . . . 6 (𝐹‘1) = (⟨“00”⟩‘1)
29 s2fv1 14927 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘1) = 0)
303, 29ax-mp 5 . . . . . 6 (⟨“00”⟩‘1) = 0
3128, 30eqtri 2765 . . . . 5 (𝐹‘1) = 0
3231fveq2i 6909 . . . 4 (𝐼‘(𝐹‘1)) = (𝐼‘0)
33 prcom 4732 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
3414fveq1i 6907 . . . . . . . 8 (𝑃‘2) = (⟨“𝑋𝑌𝑋”⟩‘2)
35 s3fv2 14932 . . . . . . . . 9 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋)
3616, 35ax-mp 5 . . . . . . . 8 (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋
3734, 36eqtri 2765 . . . . . . 7 (𝑃‘2) = 𝑋
3824, 37preq12i 4738 . . . . . 6 {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋}
3938eqcomi 2746 . . . . 5 {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)}
4033, 39eqtri 2765 . . . 4 {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)}
4132, 13, 403eqtri 2769 . . 3 (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}
42 2wlklem 29685 . . 3 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
4327, 41, 42mpbir2an 711 . 2 𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4414, 12wlkdlem2 29946 . . 3 (0..^(♯‘𝐹)) = {0, 1}
4544raleqi 3324 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
4643, 45mpbir 231 1 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {cpr 4628  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  2c2 12321  cz 12613  ..^cfzo 13694  chash 14369  ⟨“cs1 14633  ⟨“cs2 14880  ⟨“cs3 14881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888
This theorem is referenced by:  wlk2v2e  30176
  Copyright terms: Public domain W3C validator