![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlk2v2elem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for wlk2v2e 29101: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
Ref | Expression |
---|---|
wlk2v2elem2 | ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = 〈“00”〉 | |
2 | 1 | fveq1i 6843 | . . . . . 6 ⊢ (𝐹‘0) = (〈“00”〉‘0) |
3 | 0z 12510 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
4 | s2fv0 14776 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘0) = 0) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘0) = 0 |
6 | 2, 5 | eqtri 2764 | . . . . 5 ⊢ (𝐹‘0) = 0 |
7 | 6 | fveq2i 6845 | . . . 4 ⊢ (𝐼‘(𝐹‘0)) = (𝐼‘0) |
8 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
9 | 8 | fveq1i 6843 | . . . . 5 ⊢ (𝐼‘0) = (〈“{𝑋, 𝑌}”〉‘0) |
10 | prex 5389 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
11 | s1fv 14498 | . . . . . 6 ⊢ ({𝑋, 𝑌} ∈ V → (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌}) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌} |
13 | 9, 12 | eqtri 2764 | . . . 4 ⊢ (𝐼‘0) = {𝑋, 𝑌} |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 14 | fveq1i 6843 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝑋𝑌𝑋”〉‘0) |
16 | wlk2v2e.x | . . . . . . . 8 ⊢ 𝑋 ∈ V | |
17 | s3fv0 14780 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘0) = 𝑋) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘0) = 𝑋 |
19 | 15, 18 | eqtri 2764 | . . . . . 6 ⊢ (𝑃‘0) = 𝑋 |
20 | 14 | fveq1i 6843 | . . . . . . 7 ⊢ (𝑃‘1) = (〈“𝑋𝑌𝑋”〉‘1) |
21 | wlk2v2e.y | . . . . . . . 8 ⊢ 𝑌 ∈ V | |
22 | s3fv1 14781 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (〈“𝑋𝑌𝑋”〉‘1) = 𝑌) | |
23 | 21, 22 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘1) = 𝑌 |
24 | 20, 23 | eqtri 2764 | . . . . . 6 ⊢ (𝑃‘1) = 𝑌 |
25 | 19, 24 | preq12i 4699 | . . . . 5 ⊢ {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌} |
26 | 25 | eqcomi 2745 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)} |
27 | 7, 13, 26 | 3eqtri 2768 | . . 3 ⊢ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} |
28 | 1 | fveq1i 6843 | . . . . . 6 ⊢ (𝐹‘1) = (〈“00”〉‘1) |
29 | s2fv1 14777 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘1) = 0) | |
30 | 3, 29 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘1) = 0 |
31 | 28, 30 | eqtri 2764 | . . . . 5 ⊢ (𝐹‘1) = 0 |
32 | 31 | fveq2i 6845 | . . . 4 ⊢ (𝐼‘(𝐹‘1)) = (𝐼‘0) |
33 | prcom 4693 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
34 | 14 | fveq1i 6843 | . . . . . . . 8 ⊢ (𝑃‘2) = (〈“𝑋𝑌𝑋”〉‘2) |
35 | s3fv2 14782 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘2) = 𝑋) | |
36 | 16, 35 | ax-mp 5 | . . . . . . . 8 ⊢ (〈“𝑋𝑌𝑋”〉‘2) = 𝑋 |
37 | 34, 36 | eqtri 2764 | . . . . . . 7 ⊢ (𝑃‘2) = 𝑋 |
38 | 24, 37 | preq12i 4699 | . . . . . 6 ⊢ {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋} |
39 | 38 | eqcomi 2745 | . . . . 5 ⊢ {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)} |
40 | 33, 39 | eqtri 2764 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)} |
41 | 32, 13, 40 | 3eqtri 2768 | . . 3 ⊢ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} |
42 | 2wlklem 28615 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | |
43 | 27, 41, 42 | mpbir2an 709 | . 2 ⊢ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
44 | 14, 1 | 2wlkdlem2 28871 | . . 3 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
45 | 44 | raleqi 3311 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
46 | 43, 45 | mpbir 230 | 1 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 {cpr 4588 ‘cfv 6496 (class class class)co 7357 0cc0 11051 1c1 11052 + caddc 11054 2c2 12208 ℤcz 12499 ..^cfzo 13567 ♯chash 14230 〈“cs1 14483 〈“cs2 14730 〈“cs3 14731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-s2 14737 df-s3 14738 |
This theorem is referenced by: wlk2v2e 29101 |
Copyright terms: Public domain | W3C validator |