| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlk2v2elem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for wlk2v2e 30138: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
| wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
| wlk2v2e.x | ⊢ 𝑋 ∈ V |
| wlk2v2e.y | ⊢ 𝑌 ∈ V |
| wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
| Ref | Expression |
|---|---|
| wlk2v2elem2 | ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = 〈“00”〉 | |
| 2 | 1 | fveq1i 6877 | . . . . . 6 ⊢ (𝐹‘0) = (〈“00”〉‘0) |
| 3 | 0z 12599 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 4 | s2fv0 14906 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘0) = 0) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘0) = 0 |
| 6 | 2, 5 | eqtri 2758 | . . . . 5 ⊢ (𝐹‘0) = 0 |
| 7 | 6 | fveq2i 6879 | . . . 4 ⊢ (𝐼‘(𝐹‘0)) = (𝐼‘0) |
| 8 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
| 9 | 8 | fveq1i 6877 | . . . . 5 ⊢ (𝐼‘0) = (〈“{𝑋, 𝑌}”〉‘0) |
| 10 | prex 5407 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
| 11 | s1fv 14628 | . . . . . 6 ⊢ ({𝑋, 𝑌} ∈ V → (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌} |
| 13 | 9, 12 | eqtri 2758 | . . . 4 ⊢ (𝐼‘0) = {𝑋, 𝑌} |
| 14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
| 15 | 14 | fveq1i 6877 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝑋𝑌𝑋”〉‘0) |
| 16 | wlk2v2e.x | . . . . . . . 8 ⊢ 𝑋 ∈ V | |
| 17 | s3fv0 14910 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘0) = 𝑋) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘0) = 𝑋 |
| 19 | 15, 18 | eqtri 2758 | . . . . . 6 ⊢ (𝑃‘0) = 𝑋 |
| 20 | 14 | fveq1i 6877 | . . . . . . 7 ⊢ (𝑃‘1) = (〈“𝑋𝑌𝑋”〉‘1) |
| 21 | wlk2v2e.y | . . . . . . . 8 ⊢ 𝑌 ∈ V | |
| 22 | s3fv1 14911 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (〈“𝑋𝑌𝑋”〉‘1) = 𝑌) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘1) = 𝑌 |
| 24 | 20, 23 | eqtri 2758 | . . . . . 6 ⊢ (𝑃‘1) = 𝑌 |
| 25 | 19, 24 | preq12i 4714 | . . . . 5 ⊢ {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌} |
| 26 | 25 | eqcomi 2744 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)} |
| 27 | 7, 13, 26 | 3eqtri 2762 | . . 3 ⊢ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} |
| 28 | 1 | fveq1i 6877 | . . . . . 6 ⊢ (𝐹‘1) = (〈“00”〉‘1) |
| 29 | s2fv1 14907 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘1) = 0) | |
| 30 | 3, 29 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘1) = 0 |
| 31 | 28, 30 | eqtri 2758 | . . . . 5 ⊢ (𝐹‘1) = 0 |
| 32 | 31 | fveq2i 6879 | . . . 4 ⊢ (𝐼‘(𝐹‘1)) = (𝐼‘0) |
| 33 | prcom 4708 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 34 | 14 | fveq1i 6877 | . . . . . . . 8 ⊢ (𝑃‘2) = (〈“𝑋𝑌𝑋”〉‘2) |
| 35 | s3fv2 14912 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘2) = 𝑋) | |
| 36 | 16, 35 | ax-mp 5 | . . . . . . . 8 ⊢ (〈“𝑋𝑌𝑋”〉‘2) = 𝑋 |
| 37 | 34, 36 | eqtri 2758 | . . . . . . 7 ⊢ (𝑃‘2) = 𝑋 |
| 38 | 24, 37 | preq12i 4714 | . . . . . 6 ⊢ {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋} |
| 39 | 38 | eqcomi 2744 | . . . . 5 ⊢ {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)} |
| 40 | 33, 39 | eqtri 2758 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)} |
| 41 | 32, 13, 40 | 3eqtri 2762 | . . 3 ⊢ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} |
| 42 | 2wlklem 29647 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | |
| 43 | 27, 41, 42 | mpbir2an 711 | . 2 ⊢ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| 44 | 14, 1 | 2wlkdlem2 29908 | . . 3 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
| 45 | 44 | raleqi 3303 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 46 | 43, 45 | mpbir 231 | 1 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 {cpr 4603 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 2c2 12295 ℤcz 12588 ..^cfzo 13671 ♯chash 14348 〈“cs1 14613 〈“cs2 14860 〈“cs3 14861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 |
| This theorem is referenced by: wlk2v2e 30138 |
| Copyright terms: Public domain | W3C validator |