Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlk2v2elem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for wlk2v2e 28422: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
Ref | Expression |
---|---|
wlk2v2elem2 | ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = 〈“00”〉 | |
2 | 1 | fveq1i 6757 | . . . . . 6 ⊢ (𝐹‘0) = (〈“00”〉‘0) |
3 | 0z 12260 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
4 | s2fv0 14528 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘0) = 0) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘0) = 0 |
6 | 2, 5 | eqtri 2766 | . . . . 5 ⊢ (𝐹‘0) = 0 |
7 | 6 | fveq2i 6759 | . . . 4 ⊢ (𝐼‘(𝐹‘0)) = (𝐼‘0) |
8 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
9 | 8 | fveq1i 6757 | . . . . 5 ⊢ (𝐼‘0) = (〈“{𝑋, 𝑌}”〉‘0) |
10 | prex 5350 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
11 | s1fv 14243 | . . . . . 6 ⊢ ({𝑋, 𝑌} ∈ V → (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌}) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌} |
13 | 9, 12 | eqtri 2766 | . . . 4 ⊢ (𝐼‘0) = {𝑋, 𝑌} |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 14 | fveq1i 6757 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝑋𝑌𝑋”〉‘0) |
16 | wlk2v2e.x | . . . . . . . 8 ⊢ 𝑋 ∈ V | |
17 | s3fv0 14532 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘0) = 𝑋) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘0) = 𝑋 |
19 | 15, 18 | eqtri 2766 | . . . . . 6 ⊢ (𝑃‘0) = 𝑋 |
20 | 14 | fveq1i 6757 | . . . . . . 7 ⊢ (𝑃‘1) = (〈“𝑋𝑌𝑋”〉‘1) |
21 | wlk2v2e.y | . . . . . . . 8 ⊢ 𝑌 ∈ V | |
22 | s3fv1 14533 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (〈“𝑋𝑌𝑋”〉‘1) = 𝑌) | |
23 | 21, 22 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘1) = 𝑌 |
24 | 20, 23 | eqtri 2766 | . . . . . 6 ⊢ (𝑃‘1) = 𝑌 |
25 | 19, 24 | preq12i 4671 | . . . . 5 ⊢ {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌} |
26 | 25 | eqcomi 2747 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)} |
27 | 7, 13, 26 | 3eqtri 2770 | . . 3 ⊢ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} |
28 | 1 | fveq1i 6757 | . . . . . 6 ⊢ (𝐹‘1) = (〈“00”〉‘1) |
29 | s2fv1 14529 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘1) = 0) | |
30 | 3, 29 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘1) = 0 |
31 | 28, 30 | eqtri 2766 | . . . . 5 ⊢ (𝐹‘1) = 0 |
32 | 31 | fveq2i 6759 | . . . 4 ⊢ (𝐼‘(𝐹‘1)) = (𝐼‘0) |
33 | prcom 4665 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
34 | 14 | fveq1i 6757 | . . . . . . . 8 ⊢ (𝑃‘2) = (〈“𝑋𝑌𝑋”〉‘2) |
35 | s3fv2 14534 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘2) = 𝑋) | |
36 | 16, 35 | ax-mp 5 | . . . . . . . 8 ⊢ (〈“𝑋𝑌𝑋”〉‘2) = 𝑋 |
37 | 34, 36 | eqtri 2766 | . . . . . . 7 ⊢ (𝑃‘2) = 𝑋 |
38 | 24, 37 | preq12i 4671 | . . . . . 6 ⊢ {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋} |
39 | 38 | eqcomi 2747 | . . . . 5 ⊢ {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)} |
40 | 33, 39 | eqtri 2766 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)} |
41 | 32, 13, 40 | 3eqtri 2770 | . . 3 ⊢ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} |
42 | 2wlklem 27937 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | |
43 | 27, 41, 42 | mpbir2an 707 | . 2 ⊢ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
44 | 14, 1 | 2wlkdlem2 28192 | . . 3 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
45 | 44 | raleqi 3337 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
46 | 43, 45 | mpbir 230 | 1 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 {cpr 4560 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 2c2 11958 ℤcz 12249 ..^cfzo 13311 ♯chash 13972 〈“cs1 14228 〈“cs2 14482 〈“cs3 14483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 |
This theorem is referenced by: wlk2v2e 28422 |
Copyright terms: Public domain | W3C validator |