![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlk2v2elem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for wlk2v2e 29879: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = ⟨“{𝑋, 𝑌}”⟩ |
wlk2v2e.f | ⊢ 𝐹 = ⟨“00”⟩ |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = ⟨“𝑋𝑌𝑋”⟩ |
Ref | Expression |
---|---|
wlk2v2elem2 | ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = ⟨“00”⟩ | |
2 | 1 | fveq1i 6882 | . . . . . 6 ⊢ (𝐹‘0) = (⟨“00”⟩‘0) |
3 | 0z 12566 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
4 | s2fv0 14835 | . . . . . . 7 ⊢ (0 ∈ ℤ → (⟨“00”⟩‘0) = 0) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (⟨“00”⟩‘0) = 0 |
6 | 2, 5 | eqtri 2752 | . . . . 5 ⊢ (𝐹‘0) = 0 |
7 | 6 | fveq2i 6884 | . . . 4 ⊢ (𝐼‘(𝐹‘0)) = (𝐼‘0) |
8 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = ⟨“{𝑋, 𝑌}”⟩ | |
9 | 8 | fveq1i 6882 | . . . . 5 ⊢ (𝐼‘0) = (⟨“{𝑋, 𝑌}”⟩‘0) |
10 | prex 5422 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
11 | s1fv 14557 | . . . . . 6 ⊢ ({𝑋, 𝑌} ∈ V → (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌}) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌} |
13 | 9, 12 | eqtri 2752 | . . . 4 ⊢ (𝐼‘0) = {𝑋, 𝑌} |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = ⟨“𝑋𝑌𝑋”⟩ | |
15 | 14 | fveq1i 6882 | . . . . . . 7 ⊢ (𝑃‘0) = (⟨“𝑋𝑌𝑋”⟩‘0) |
16 | wlk2v2e.x | . . . . . . . 8 ⊢ 𝑋 ∈ V | |
17 | s3fv0 14839 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋 |
19 | 15, 18 | eqtri 2752 | . . . . . 6 ⊢ (𝑃‘0) = 𝑋 |
20 | 14 | fveq1i 6882 | . . . . . . 7 ⊢ (𝑃‘1) = (⟨“𝑋𝑌𝑋”⟩‘1) |
21 | wlk2v2e.y | . . . . . . . 8 ⊢ 𝑌 ∈ V | |
22 | s3fv1 14840 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌) | |
23 | 21, 22 | ax-mp 5 | . . . . . . 7 ⊢ (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌 |
24 | 20, 23 | eqtri 2752 | . . . . . 6 ⊢ (𝑃‘1) = 𝑌 |
25 | 19, 24 | preq12i 4734 | . . . . 5 ⊢ {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌} |
26 | 25 | eqcomi 2733 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)} |
27 | 7, 13, 26 | 3eqtri 2756 | . . 3 ⊢ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} |
28 | 1 | fveq1i 6882 | . . . . . 6 ⊢ (𝐹‘1) = (⟨“00”⟩‘1) |
29 | s2fv1 14836 | . . . . . . 7 ⊢ (0 ∈ ℤ → (⟨“00”⟩‘1) = 0) | |
30 | 3, 29 | ax-mp 5 | . . . . . 6 ⊢ (⟨“00”⟩‘1) = 0 |
31 | 28, 30 | eqtri 2752 | . . . . 5 ⊢ (𝐹‘1) = 0 |
32 | 31 | fveq2i 6884 | . . . 4 ⊢ (𝐼‘(𝐹‘1)) = (𝐼‘0) |
33 | prcom 4728 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
34 | 14 | fveq1i 6882 | . . . . . . . 8 ⊢ (𝑃‘2) = (⟨“𝑋𝑌𝑋”⟩‘2) |
35 | s3fv2 14841 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋) | |
36 | 16, 35 | ax-mp 5 | . . . . . . . 8 ⊢ (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋 |
37 | 34, 36 | eqtri 2752 | . . . . . . 7 ⊢ (𝑃‘2) = 𝑋 |
38 | 24, 37 | preq12i 4734 | . . . . . 6 ⊢ {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋} |
39 | 38 | eqcomi 2733 | . . . . 5 ⊢ {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)} |
40 | 33, 39 | eqtri 2752 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)} |
41 | 32, 13, 40 | 3eqtri 2756 | . . 3 ⊢ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} |
42 | 2wlklem 29393 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | |
43 | 27, 41, 42 | mpbir2an 708 | . 2 ⊢ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
44 | 14, 1 | 2wlkdlem2 29649 | . . 3 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
45 | 44 | raleqi 3315 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
46 | 43, 45 | mpbir 230 | 1 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 {cpr 4622 ‘cfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 + caddc 11109 2c2 12264 ℤcz 12555 ..^cfzo 13624 ♯chash 14287 ⟨“cs1 14542 ⟨“cs2 14789 ⟨“cs3 14790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 df-s3 14797 |
This theorem is referenced by: wlk2v2e 29879 |
Copyright terms: Public domain | W3C validator |