| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlk2v2elem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for wlk2v2e 30139: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
| wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
| wlk2v2e.x | ⊢ 𝑋 ∈ V |
| wlk2v2e.y | ⊢ 𝑌 ∈ V |
| wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
| Ref | Expression |
|---|---|
| wlk2v2elem2 | ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = 〈“00”〉 | |
| 2 | 1 | fveq1i 6829 | . . . . . 6 ⊢ (𝐹‘0) = (〈“00”〉‘0) |
| 3 | 0z 12486 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 4 | s2fv0 14796 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘0) = 0) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘0) = 0 |
| 6 | 2, 5 | eqtri 2756 | . . . . 5 ⊢ (𝐹‘0) = 0 |
| 7 | 6 | fveq2i 6831 | . . . 4 ⊢ (𝐼‘(𝐹‘0)) = (𝐼‘0) |
| 8 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
| 9 | 8 | fveq1i 6829 | . . . . 5 ⊢ (𝐼‘0) = (〈“{𝑋, 𝑌}”〉‘0) |
| 10 | prex 5377 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
| 11 | s1fv 14520 | . . . . . 6 ⊢ ({𝑋, 𝑌} ∈ V → (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“{𝑋, 𝑌}”〉‘0) = {𝑋, 𝑌} |
| 13 | 9, 12 | eqtri 2756 | . . . 4 ⊢ (𝐼‘0) = {𝑋, 𝑌} |
| 14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
| 15 | 14 | fveq1i 6829 | . . . . . . 7 ⊢ (𝑃‘0) = (〈“𝑋𝑌𝑋”〉‘0) |
| 16 | wlk2v2e.x | . . . . . . . 8 ⊢ 𝑋 ∈ V | |
| 17 | s3fv0 14800 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘0) = 𝑋) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘0) = 𝑋 |
| 19 | 15, 18 | eqtri 2756 | . . . . . 6 ⊢ (𝑃‘0) = 𝑋 |
| 20 | 14 | fveq1i 6829 | . . . . . . 7 ⊢ (𝑃‘1) = (〈“𝑋𝑌𝑋”〉‘1) |
| 21 | wlk2v2e.y | . . . . . . . 8 ⊢ 𝑌 ∈ V | |
| 22 | s3fv1 14801 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (〈“𝑋𝑌𝑋”〉‘1) = 𝑌) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . . 7 ⊢ (〈“𝑋𝑌𝑋”〉‘1) = 𝑌 |
| 24 | 20, 23 | eqtri 2756 | . . . . . 6 ⊢ (𝑃‘1) = 𝑌 |
| 25 | 19, 24 | preq12i 4690 | . . . . 5 ⊢ {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌} |
| 26 | 25 | eqcomi 2742 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)} |
| 27 | 7, 13, 26 | 3eqtri 2760 | . . 3 ⊢ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} |
| 28 | 1 | fveq1i 6829 | . . . . . 6 ⊢ (𝐹‘1) = (〈“00”〉‘1) |
| 29 | s2fv1 14797 | . . . . . . 7 ⊢ (0 ∈ ℤ → (〈“00”〉‘1) = 0) | |
| 30 | 3, 29 | ax-mp 5 | . . . . . 6 ⊢ (〈“00”〉‘1) = 0 |
| 31 | 28, 30 | eqtri 2756 | . . . . 5 ⊢ (𝐹‘1) = 0 |
| 32 | 31 | fveq2i 6831 | . . . 4 ⊢ (𝐼‘(𝐹‘1)) = (𝐼‘0) |
| 33 | prcom 4684 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 34 | 14 | fveq1i 6829 | . . . . . . . 8 ⊢ (𝑃‘2) = (〈“𝑋𝑌𝑋”〉‘2) |
| 35 | s3fv2 14802 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (〈“𝑋𝑌𝑋”〉‘2) = 𝑋) | |
| 36 | 16, 35 | ax-mp 5 | . . . . . . . 8 ⊢ (〈“𝑋𝑌𝑋”〉‘2) = 𝑋 |
| 37 | 34, 36 | eqtri 2756 | . . . . . . 7 ⊢ (𝑃‘2) = 𝑋 |
| 38 | 24, 37 | preq12i 4690 | . . . . . 6 ⊢ {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋} |
| 39 | 38 | eqcomi 2742 | . . . . 5 ⊢ {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)} |
| 40 | 33, 39 | eqtri 2756 | . . . 4 ⊢ {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)} |
| 41 | 32, 13, 40 | 3eqtri 2760 | . . 3 ⊢ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} |
| 42 | 2wlklem 29646 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | |
| 43 | 27, 41, 42 | mpbir2an 711 | . 2 ⊢ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| 44 | 14, 1 | 2wlkdlem2 29906 | . . 3 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
| 45 | 44 | raleqi 3291 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 46 | 43, 45 | mpbir 231 | 1 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {cpr 4577 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 2c2 12187 ℤcz 12475 ..^cfzo 13556 ♯chash 14239 〈“cs1 14505 〈“cs2 14750 〈“cs3 14751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 |
| This theorem is referenced by: wlk2v2e 30139 |
| Copyright terms: Public domain | W3C validator |