Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequap Structured version   Visualization version   GIF version

Theorem zlmodzxzequap 48492
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzequap.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequap.m + = (+g𝑍)
zlmodzxzequap.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzequap ((2 𝐴) + (-3 𝐵)) = 0

Proof of Theorem zlmodzxzequap
StepHypRef Expression
1 3cn 12274 . . . . . . 7 3 ∈ ℂ
2 2cn 12268 . . . . . . 7 2 ∈ ℂ
31, 2mulneg1i 11631 . . . . . 6 (-3 · 2) = -(3 · 2)
43oveq2i 7401 . . . . 5 ((2 · 3) + (-3 · 2)) = ((2 · 3) + -(3 · 2))
52, 1mulcli 11188 . . . . . 6 (2 · 3) ∈ ℂ
61, 2mulcli 11188 . . . . . 6 (3 · 2) ∈ ℂ
7 negsub 11477 . . . . . . 7 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = ((2 · 3) − (3 · 2)))
81, 2mulcomi 11189 . . . . . . . . 9 (3 · 2) = (2 · 3)
98oveq2i 7401 . . . . . . . 8 ((2 · 3) − (3 · 2)) = ((2 · 3) − (2 · 3))
105subidi 11500 . . . . . . . 8 ((2 · 3) − (2 · 3)) = 0
119, 10eqtri 2753 . . . . . . 7 ((2 · 3) − (3 · 2)) = 0
127, 11eqtrdi 2781 . . . . . 6 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = 0)
135, 6, 12mp2an 692 . . . . 5 ((2 · 3) + -(3 · 2)) = 0
144, 13eqtri 2753 . . . 4 ((2 · 3) + (-3 · 2)) = 0
1514opeq2i 4844 . . 3 ⟨0, ((2 · 3) + (-3 · 2))⟩ = ⟨0, 0⟩
16 4cn 12278 . . . . . . 7 4 ∈ ℂ
171, 16mulneg1i 11631 . . . . . 6 (-3 · 4) = -(3 · 4)
1817oveq2i 7401 . . . . 5 ((2 · 6) + (-3 · 4)) = ((2 · 6) + -(3 · 4))
19 6cn 12284 . . . . . . . 8 6 ∈ ℂ
202, 19mulcli 11188 . . . . . . 7 (2 · 6) ∈ ℂ
211, 16mulcli 11188 . . . . . . 7 (3 · 4) ∈ ℂ
2220, 21negsubi 11507 . . . . . 6 ((2 · 6) + -(3 · 4)) = ((2 · 6) − (3 · 4))
23 2t6m3t4e0 48340 . . . . . 6 ((2 · 6) − (3 · 4)) = 0
2422, 23eqtri 2753 . . . . 5 ((2 · 6) + -(3 · 4)) = 0
2518, 24eqtri 2753 . . . 4 ((2 · 6) + (-3 · 4)) = 0
2625opeq2i 4844 . . 3 ⟨1, ((2 · 6) + (-3 · 4))⟩ = ⟨1, 0⟩
2715, 26preq12i 4705 . 2 {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2928oveq2i 7401 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
30 2z 12572 . . . . . 6 2 ∈ ℤ
31 3z 12573 . . . . . 6 3 ∈ ℤ
32 6nn 12282 . . . . . . 7 6 ∈ ℕ
3332nnzi 12564 . . . . . 6 6 ∈ ℤ
34 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
35 zlmodzxzequap.t . . . . . . 7 = ( ·𝑠𝑍)
3634, 35zlmodzxzscm 48349 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
3730, 31, 33, 36mp3an 1463 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
3829, 37eqtri 2753 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
39 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
4039oveq2i 7401 . . . . 5 (-3 𝐵) = (-3 {⟨0, 2⟩, ⟨1, 4⟩})
41 znegcl 12575 . . . . . . 7 (3 ∈ ℤ → -3 ∈ ℤ)
4231, 41ax-mp 5 . . . . . 6 -3 ∈ ℤ
43 4z 12574 . . . . . 6 4 ∈ ℤ
4434, 35zlmodzxzscm 48349 . . . . . 6 ((-3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
4542, 30, 43, 44mp3an 1463 . . . . 5 (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4640, 45eqtri 2753 . . . 4 (-3 𝐵) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4738, 46oveq12i 7402 . . 3 ((2 𝐴) + (-3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
48 zmulcl 12589 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
4930, 31, 48mp2an 692 . . . 4 (2 · 3) ∈ ℤ
50 zmulcl 12589 . . . . 5 ((-3 ∈ ℤ ∧ 2 ∈ ℤ) → (-3 · 2) ∈ ℤ)
5142, 30, 50mp2an 692 . . . 4 (-3 · 2) ∈ ℤ
52 zmulcl 12589 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
5330, 33, 52mp2an 692 . . . 4 (2 · 6) ∈ ℤ
54 zmulcl 12589 . . . . 5 ((-3 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 · 4) ∈ ℤ)
5542, 43, 54mp2an 692 . . . 4 (-3 · 4) ∈ ℤ
56 zlmodzxzequap.m . . . . 5 + = (+g𝑍)
5734, 56zlmodzxzadd 48350 . . . 4 ((((2 · 3) ∈ ℤ ∧ (-3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (-3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩})
5849, 51, 53, 55, 57mp4an 693 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
5947, 58eqtri 2753 . 2 ((2 𝐴) + (-3 𝐵)) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
60 zlmodzxzequap.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
6127, 59, 603eqtr4i 2763 1 ((2 𝐴) + (-3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cpr 4594  cop 4598  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413  2c2 12248  3c3 12249  4c4 12250  6c6 12252  cz 12536  +gcplusg 17227   ·𝑠 cvsca 17231  ringczring 21363   freeLMod cfrlm 21662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-dsmm 21648  df-frlm 21663
This theorem is referenced by:  zlmodzxzldeplem3  48495
  Copyright terms: Public domain W3C validator