Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequap Structured version   Visualization version   GIF version

Theorem zlmodzxzequap 44034
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzequap.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequap.m + = (+g𝑍)
zlmodzxzequap.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzequap ((2 𝐴) + (-3 𝐵)) = 0

Proof of Theorem zlmodzxzequap
StepHypRef Expression
1 3cn 11566 . . . . . . 7 3 ∈ ℂ
2 2cn 11560 . . . . . . 7 2 ∈ ℂ
31, 2mulneg1i 10934 . . . . . 6 (-3 · 2) = -(3 · 2)
43oveq2i 7027 . . . . 5 ((2 · 3) + (-3 · 2)) = ((2 · 3) + -(3 · 2))
52, 1mulcli 10494 . . . . . 6 (2 · 3) ∈ ℂ
61, 2mulcli 10494 . . . . . 6 (3 · 2) ∈ ℂ
7 negsub 10782 . . . . . . 7 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = ((2 · 3) − (3 · 2)))
81, 2mulcomi 10495 . . . . . . . . 9 (3 · 2) = (2 · 3)
98oveq2i 7027 . . . . . . . 8 ((2 · 3) − (3 · 2)) = ((2 · 3) − (2 · 3))
105subidi 10805 . . . . . . . 8 ((2 · 3) − (2 · 3)) = 0
119, 10eqtri 2819 . . . . . . 7 ((2 · 3) − (3 · 2)) = 0
127, 11syl6eq 2847 . . . . . 6 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = 0)
135, 6, 12mp2an 688 . . . . 5 ((2 · 3) + -(3 · 2)) = 0
144, 13eqtri 2819 . . . 4 ((2 · 3) + (-3 · 2)) = 0
1514opeq2i 4714 . . 3 ⟨0, ((2 · 3) + (-3 · 2))⟩ = ⟨0, 0⟩
16 4cn 11570 . . . . . . 7 4 ∈ ℂ
171, 16mulneg1i 10934 . . . . . 6 (-3 · 4) = -(3 · 4)
1817oveq2i 7027 . . . . 5 ((2 · 6) + (-3 · 4)) = ((2 · 6) + -(3 · 4))
19 6cn 11576 . . . . . . . 8 6 ∈ ℂ
202, 19mulcli 10494 . . . . . . 7 (2 · 6) ∈ ℂ
211, 16mulcli 10494 . . . . . . 7 (3 · 4) ∈ ℂ
2220, 21negsubi 10812 . . . . . 6 ((2 · 6) + -(3 · 4)) = ((2 · 6) − (3 · 4))
23 2t6m3t4e0 43874 . . . . . 6 ((2 · 6) − (3 · 4)) = 0
2422, 23eqtri 2819 . . . . 5 ((2 · 6) + -(3 · 4)) = 0
2518, 24eqtri 2819 . . . 4 ((2 · 6) + (-3 · 4)) = 0
2625opeq2i 4714 . . 3 ⟨1, ((2 · 6) + (-3 · 4))⟩ = ⟨1, 0⟩
2715, 26preq12i 4581 . 2 {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2928oveq2i 7027 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
30 2z 11863 . . . . . 6 2 ∈ ℤ
31 3z 11864 . . . . . 6 3 ∈ ℤ
32 6nn 11574 . . . . . . 7 6 ∈ ℕ
3332nnzi 11855 . . . . . 6 6 ∈ ℤ
34 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
35 zlmodzxzequap.t . . . . . . 7 = ( ·𝑠𝑍)
3634, 35zlmodzxzscm 43883 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
3730, 31, 33, 36mp3an 1453 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
3829, 37eqtri 2819 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
39 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
4039oveq2i 7027 . . . . 5 (-3 𝐵) = (-3 {⟨0, 2⟩, ⟨1, 4⟩})
41 znegcl 11866 . . . . . . 7 (3 ∈ ℤ → -3 ∈ ℤ)
4231, 41ax-mp 5 . . . . . 6 -3 ∈ ℤ
43 4z 11865 . . . . . 6 4 ∈ ℤ
4434, 35zlmodzxzscm 43883 . . . . . 6 ((-3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
4542, 30, 43, 44mp3an 1453 . . . . 5 (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4640, 45eqtri 2819 . . . 4 (-3 𝐵) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4738, 46oveq12i 7028 . . 3 ((2 𝐴) + (-3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
48 zmulcl 11880 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
4930, 31, 48mp2an 688 . . . 4 (2 · 3) ∈ ℤ
50 zmulcl 11880 . . . . 5 ((-3 ∈ ℤ ∧ 2 ∈ ℤ) → (-3 · 2) ∈ ℤ)
5142, 30, 50mp2an 688 . . . 4 (-3 · 2) ∈ ℤ
52 zmulcl 11880 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
5330, 33, 52mp2an 688 . . . 4 (2 · 6) ∈ ℤ
54 zmulcl 11880 . . . . 5 ((-3 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 · 4) ∈ ℤ)
5542, 43, 54mp2an 688 . . . 4 (-3 · 4) ∈ ℤ
56 zlmodzxzequap.m . . . . 5 + = (+g𝑍)
5734, 56zlmodzxzadd 43884 . . . 4 ((((2 · 3) ∈ ℤ ∧ (-3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (-3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩})
5849, 51, 53, 55, 57mp4an 689 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
5947, 58eqtri 2819 . 2 ((2 𝐴) + (-3 𝐵)) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
60 zlmodzxzequap.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
6127, 59, 603eqtr4i 2829 1 ((2 𝐴) + (-3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wcel 2081  {cpr 4474  cop 4478  cfv 6225  (class class class)co 7016  cc 10381  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  cmin 10717  -cneg 10718  2c2 11540  3c3 11541  4c4 11542  6c6 11544  cz 11829  +gcplusg 16394   ·𝑠 cvsca 16398  ringzring 20299   freeLMod cfrlm 20572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-0g 16544  df-prds 16550  df-pws 16552  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-subg 18030  df-cmn 18635  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-subrg 19223  df-sra 19634  df-rgmod 19635  df-cnfld 20228  df-zring 20300  df-dsmm 20558  df-frlm 20573
This theorem is referenced by:  zlmodzxzldeplem3  44037
  Copyright terms: Public domain W3C validator