Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequap Structured version   Visualization version   GIF version

Theorem zlmodzxzequap 45728
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzequap.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequap.m + = (+g𝑍)
zlmodzxzequap.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzequap ((2 𝐴) + (-3 𝐵)) = 0

Proof of Theorem zlmodzxzequap
StepHypRef Expression
1 3cn 11984 . . . . . . 7 3 ∈ ℂ
2 2cn 11978 . . . . . . 7 2 ∈ ℂ
31, 2mulneg1i 11351 . . . . . 6 (-3 · 2) = -(3 · 2)
43oveq2i 7266 . . . . 5 ((2 · 3) + (-3 · 2)) = ((2 · 3) + -(3 · 2))
52, 1mulcli 10913 . . . . . 6 (2 · 3) ∈ ℂ
61, 2mulcli 10913 . . . . . 6 (3 · 2) ∈ ℂ
7 negsub 11199 . . . . . . 7 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = ((2 · 3) − (3 · 2)))
81, 2mulcomi 10914 . . . . . . . . 9 (3 · 2) = (2 · 3)
98oveq2i 7266 . . . . . . . 8 ((2 · 3) − (3 · 2)) = ((2 · 3) − (2 · 3))
105subidi 11222 . . . . . . . 8 ((2 · 3) − (2 · 3)) = 0
119, 10eqtri 2766 . . . . . . 7 ((2 · 3) − (3 · 2)) = 0
127, 11eqtrdi 2795 . . . . . 6 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = 0)
135, 6, 12mp2an 688 . . . . 5 ((2 · 3) + -(3 · 2)) = 0
144, 13eqtri 2766 . . . 4 ((2 · 3) + (-3 · 2)) = 0
1514opeq2i 4805 . . 3 ⟨0, ((2 · 3) + (-3 · 2))⟩ = ⟨0, 0⟩
16 4cn 11988 . . . . . . 7 4 ∈ ℂ
171, 16mulneg1i 11351 . . . . . 6 (-3 · 4) = -(3 · 4)
1817oveq2i 7266 . . . . 5 ((2 · 6) + (-3 · 4)) = ((2 · 6) + -(3 · 4))
19 6cn 11994 . . . . . . . 8 6 ∈ ℂ
202, 19mulcli 10913 . . . . . . 7 (2 · 6) ∈ ℂ
211, 16mulcli 10913 . . . . . . 7 (3 · 4) ∈ ℂ
2220, 21negsubi 11229 . . . . . 6 ((2 · 6) + -(3 · 4)) = ((2 · 6) − (3 · 4))
23 2t6m3t4e0 45572 . . . . . 6 ((2 · 6) − (3 · 4)) = 0
2422, 23eqtri 2766 . . . . 5 ((2 · 6) + -(3 · 4)) = 0
2518, 24eqtri 2766 . . . 4 ((2 · 6) + (-3 · 4)) = 0
2625opeq2i 4805 . . 3 ⟨1, ((2 · 6) + (-3 · 4))⟩ = ⟨1, 0⟩
2715, 26preq12i 4671 . 2 {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2928oveq2i 7266 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
30 2z 12282 . . . . . 6 2 ∈ ℤ
31 3z 12283 . . . . . 6 3 ∈ ℤ
32 6nn 11992 . . . . . . 7 6 ∈ ℕ
3332nnzi 12274 . . . . . 6 6 ∈ ℤ
34 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
35 zlmodzxzequap.t . . . . . . 7 = ( ·𝑠𝑍)
3634, 35zlmodzxzscm 45581 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
3730, 31, 33, 36mp3an 1459 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
3829, 37eqtri 2766 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
39 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
4039oveq2i 7266 . . . . 5 (-3 𝐵) = (-3 {⟨0, 2⟩, ⟨1, 4⟩})
41 znegcl 12285 . . . . . . 7 (3 ∈ ℤ → -3 ∈ ℤ)
4231, 41ax-mp 5 . . . . . 6 -3 ∈ ℤ
43 4z 12284 . . . . . 6 4 ∈ ℤ
4434, 35zlmodzxzscm 45581 . . . . . 6 ((-3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
4542, 30, 43, 44mp3an 1459 . . . . 5 (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4640, 45eqtri 2766 . . . 4 (-3 𝐵) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4738, 46oveq12i 7267 . . 3 ((2 𝐴) + (-3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
48 zmulcl 12299 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
4930, 31, 48mp2an 688 . . . 4 (2 · 3) ∈ ℤ
50 zmulcl 12299 . . . . 5 ((-3 ∈ ℤ ∧ 2 ∈ ℤ) → (-3 · 2) ∈ ℤ)
5142, 30, 50mp2an 688 . . . 4 (-3 · 2) ∈ ℤ
52 zmulcl 12299 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
5330, 33, 52mp2an 688 . . . 4 (2 · 6) ∈ ℤ
54 zmulcl 12299 . . . . 5 ((-3 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 · 4) ∈ ℤ)
5542, 43, 54mp2an 688 . . . 4 (-3 · 4) ∈ ℤ
56 zlmodzxzequap.m . . . . 5 + = (+g𝑍)
5734, 56zlmodzxzadd 45582 . . . 4 ((((2 · 3) ∈ ℤ ∧ (-3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (-3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩})
5849, 51, 53, 55, 57mp4an 689 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
5947, 58eqtri 2766 . 2 ((2 𝐴) + (-3 𝐵)) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
60 zlmodzxzequap.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
6127, 59, 603eqtr4i 2776 1 ((2 𝐴) + (-3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cpr 4560  cop 4564  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  2c2 11958  3c3 11959  4c4 11960  6c6 11962  cz 12249  +gcplusg 16888   ·𝑠 cvsca 16892  ringzring 20582   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-zring 20583  df-dsmm 20849  df-frlm 20864
This theorem is referenced by:  zlmodzxzldeplem3  45731
  Copyright terms: Public domain W3C validator