Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequap Structured version   Visualization version   GIF version

Theorem zlmodzxzequap 47180
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzequap.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequap.m + = (+g𝑍)
zlmodzxzequap.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzequap ((2 𝐴) + (-3 𝐵)) = 0

Proof of Theorem zlmodzxzequap
StepHypRef Expression
1 3cn 12293 . . . . . . 7 3 ∈ ℂ
2 2cn 12287 . . . . . . 7 2 ∈ ℂ
31, 2mulneg1i 11660 . . . . . 6 (-3 · 2) = -(3 · 2)
43oveq2i 7420 . . . . 5 ((2 · 3) + (-3 · 2)) = ((2 · 3) + -(3 · 2))
52, 1mulcli 11221 . . . . . 6 (2 · 3) ∈ ℂ
61, 2mulcli 11221 . . . . . 6 (3 · 2) ∈ ℂ
7 negsub 11508 . . . . . . 7 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = ((2 · 3) − (3 · 2)))
81, 2mulcomi 11222 . . . . . . . . 9 (3 · 2) = (2 · 3)
98oveq2i 7420 . . . . . . . 8 ((2 · 3) − (3 · 2)) = ((2 · 3) − (2 · 3))
105subidi 11531 . . . . . . . 8 ((2 · 3) − (2 · 3)) = 0
119, 10eqtri 2761 . . . . . . 7 ((2 · 3) − (3 · 2)) = 0
127, 11eqtrdi 2789 . . . . . 6 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = 0)
135, 6, 12mp2an 691 . . . . 5 ((2 · 3) + -(3 · 2)) = 0
144, 13eqtri 2761 . . . 4 ((2 · 3) + (-3 · 2)) = 0
1514opeq2i 4878 . . 3 ⟨0, ((2 · 3) + (-3 · 2))⟩ = ⟨0, 0⟩
16 4cn 12297 . . . . . . 7 4 ∈ ℂ
171, 16mulneg1i 11660 . . . . . 6 (-3 · 4) = -(3 · 4)
1817oveq2i 7420 . . . . 5 ((2 · 6) + (-3 · 4)) = ((2 · 6) + -(3 · 4))
19 6cn 12303 . . . . . . . 8 6 ∈ ℂ
202, 19mulcli 11221 . . . . . . 7 (2 · 6) ∈ ℂ
211, 16mulcli 11221 . . . . . . 7 (3 · 4) ∈ ℂ
2220, 21negsubi 11538 . . . . . 6 ((2 · 6) + -(3 · 4)) = ((2 · 6) − (3 · 4))
23 2t6m3t4e0 47024 . . . . . 6 ((2 · 6) − (3 · 4)) = 0
2422, 23eqtri 2761 . . . . 5 ((2 · 6) + -(3 · 4)) = 0
2518, 24eqtri 2761 . . . 4 ((2 · 6) + (-3 · 4)) = 0
2625opeq2i 4878 . . 3 ⟨1, ((2 · 6) + (-3 · 4))⟩ = ⟨1, 0⟩
2715, 26preq12i 4743 . 2 {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2928oveq2i 7420 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
30 2z 12594 . . . . . 6 2 ∈ ℤ
31 3z 12595 . . . . . 6 3 ∈ ℤ
32 6nn 12301 . . . . . . 7 6 ∈ ℕ
3332nnzi 12586 . . . . . 6 6 ∈ ℤ
34 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
35 zlmodzxzequap.t . . . . . . 7 = ( ·𝑠𝑍)
3634, 35zlmodzxzscm 47033 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
3730, 31, 33, 36mp3an 1462 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
3829, 37eqtri 2761 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
39 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
4039oveq2i 7420 . . . . 5 (-3 𝐵) = (-3 {⟨0, 2⟩, ⟨1, 4⟩})
41 znegcl 12597 . . . . . . 7 (3 ∈ ℤ → -3 ∈ ℤ)
4231, 41ax-mp 5 . . . . . 6 -3 ∈ ℤ
43 4z 12596 . . . . . 6 4 ∈ ℤ
4434, 35zlmodzxzscm 47033 . . . . . 6 ((-3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
4542, 30, 43, 44mp3an 1462 . . . . 5 (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4640, 45eqtri 2761 . . . 4 (-3 𝐵) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4738, 46oveq12i 7421 . . 3 ((2 𝐴) + (-3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
48 zmulcl 12611 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
4930, 31, 48mp2an 691 . . . 4 (2 · 3) ∈ ℤ
50 zmulcl 12611 . . . . 5 ((-3 ∈ ℤ ∧ 2 ∈ ℤ) → (-3 · 2) ∈ ℤ)
5142, 30, 50mp2an 691 . . . 4 (-3 · 2) ∈ ℤ
52 zmulcl 12611 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
5330, 33, 52mp2an 691 . . . 4 (2 · 6) ∈ ℤ
54 zmulcl 12611 . . . . 5 ((-3 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 · 4) ∈ ℤ)
5542, 43, 54mp2an 691 . . . 4 (-3 · 4) ∈ ℤ
56 zlmodzxzequap.m . . . . 5 + = (+g𝑍)
5734, 56zlmodzxzadd 47034 . . . 4 ((((2 · 3) ∈ ℤ ∧ (-3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (-3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩})
5849, 51, 53, 55, 57mp4an 692 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
5947, 58eqtri 2761 . 2 ((2 𝐴) + (-3 𝐵)) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
60 zlmodzxzequap.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
6127, 59, 603eqtr4i 2771 1 ((2 𝐴) + (-3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  {cpr 4631  cop 4635  cfv 6544  (class class class)co 7409  cc 11108  0cc0 11110  1c1 11111   + caddc 11113   · cmul 11115  cmin 11444  -cneg 11445  2c2 12267  3c3 12268  4c4 12269  6c6 12271  cz 12558  +gcplusg 17197   ·𝑠 cvsca 17201  ringczring 21017   freeLMod cfrlm 21301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-0g 17387  df-prds 17393  df-pws 17395  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-subg 19003  df-cmn 19650  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-subrg 20317  df-sra 20785  df-rgmod 20786  df-cnfld 20945  df-zring 21018  df-dsmm 21287  df-frlm 21302
This theorem is referenced by:  zlmodzxzldeplem3  47183
  Copyright terms: Public domain W3C validator