| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version | ||
| Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
| zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
| zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
| zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12209 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 2 | 1 | 2timesi 12261 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
| 3 | 3p3e6 12275 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2752 | . . . . . 6 ⊢ (2 · 3) = 6 |
| 5 | 3t2e6 12289 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 6 | 4, 5 | oveq12i 7361 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
| 7 | 6cn 12219 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 7 | subidi 11435 | . . . . 5 ⊢ (6 − 6) = 0 |
| 9 | 6, 8 | eqtri 2752 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
| 10 | 9 | opeq2i 4828 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
| 11 | 2t6m3t4e0 48352 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
| 12 | 11 | opeq2i 4828 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
| 13 | 10, 12 | preq12i 4690 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
| 14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 15 | 14 | oveq2i 7360 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
| 16 | 2z 12507 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 17 | 3z 12508 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 18 | 6nn 12217 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 19 | 18 | nnzi 12499 | . . . . . 6 ⊢ 6 ∈ ℤ |
| 20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
| 22 | 20, 21 | zlmodzxzscm 48361 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
| 23 | 16, 17, 19, 22 | mp3an 1463 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 24 | 15, 23 | eqtri 2752 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 26 | 25 | oveq2i 7360 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
| 27 | 4z 12509 | . . . . . 6 ⊢ 4 ∈ ℤ | |
| 28 | 20, 21 | zlmodzxzscm 48361 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 29 | 17, 16, 27, 28 | mp3an 1463 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 30 | 26, 29 | eqtri 2752 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 31 | 24, 30 | oveq12i 7361 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 32 | zmulcl 12524 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
| 33 | 16, 17, 32 | mp2an 692 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
| 34 | zmulcl 12524 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
| 35 | 17, 16, 34 | mp2an 692 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
| 36 | zmulcl 12524 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
| 37 | 16, 19, 36 | mp2an 692 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
| 38 | zmulcl 12524 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
| 39 | 17, 27, 38 | mp2an 692 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
| 40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
| 41 | 20, 40 | zlmodzxzsub 48364 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
| 42 | 33, 35, 37, 39, 41 | mp4an 693 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 43 | 31, 42 | eqtri 2752 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
| 45 | 13, 43, 44 | 3eqtr4i 2762 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cpr 4579 〈cop 4583 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 2c2 12183 3c3 12184 4c4 12185 6c6 12187 ℤcz 12471 ·𝑠 cvsca 17165 -gcsg 18814 ℤringczring 21353 freeLMod cfrlm 21653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-cnfld 21262 df-zring 21354 df-dsmm 21639 df-frlm 21654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |