| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version | ||
| Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
| zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
| zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
| zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12321 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 2 | 1 | 2timesi 12378 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
| 3 | 3p3e6 12392 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2758 | . . . . . 6 ⊢ (2 · 3) = 6 |
| 5 | 3t2e6 12406 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 6 | 4, 5 | oveq12i 7417 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
| 7 | 6cn 12331 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 7 | subidi 11554 | . . . . 5 ⊢ (6 − 6) = 0 |
| 9 | 6, 8 | eqtri 2758 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
| 10 | 9 | opeq2i 4853 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
| 11 | 2t6m3t4e0 48323 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
| 12 | 11 | opeq2i 4853 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
| 13 | 10, 12 | preq12i 4714 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
| 14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 15 | 14 | oveq2i 7416 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
| 16 | 2z 12624 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 17 | 3z 12625 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 18 | 6nn 12329 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 19 | 18 | nnzi 12616 | . . . . . 6 ⊢ 6 ∈ ℤ |
| 20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
| 22 | 20, 21 | zlmodzxzscm 48332 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
| 23 | 16, 17, 19, 22 | mp3an 1463 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 24 | 15, 23 | eqtri 2758 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 26 | 25 | oveq2i 7416 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
| 27 | 4z 12626 | . . . . . 6 ⊢ 4 ∈ ℤ | |
| 28 | 20, 21 | zlmodzxzscm 48332 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 29 | 17, 16, 27, 28 | mp3an 1463 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 30 | 26, 29 | eqtri 2758 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 31 | 24, 30 | oveq12i 7417 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 32 | zmulcl 12641 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
| 33 | 16, 17, 32 | mp2an 692 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
| 34 | zmulcl 12641 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
| 35 | 17, 16, 34 | mp2an 692 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
| 36 | zmulcl 12641 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
| 37 | 16, 19, 36 | mp2an 692 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
| 38 | zmulcl 12641 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
| 39 | 17, 27, 38 | mp2an 692 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
| 40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
| 41 | 20, 40 | zlmodzxzsub 48335 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
| 42 | 33, 35, 37, 39, 41 | mp4an 693 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 43 | 31, 42 | eqtri 2758 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
| 45 | 13, 43, 44 | 3eqtr4i 2768 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cpr 4603 〈cop 4607 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 2c2 12295 3c3 12296 4c4 12297 6c6 12299 ℤcz 12588 ·𝑠 cvsca 17275 -gcsg 18918 ℤringczring 21407 freeLMod cfrlm 21706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-cnfld 21316 df-zring 21408 df-dsmm 21692 df-frlm 21707 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |