| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version | ||
| Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
| zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
| zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
| zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12245 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 2 | 1 | 2timesi 12297 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
| 3 | 3p3e6 12311 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2752 | . . . . . 6 ⊢ (2 · 3) = 6 |
| 5 | 3t2e6 12325 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 6 | 4, 5 | oveq12i 7381 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
| 7 | 6cn 12255 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 7 | subidi 11471 | . . . . 5 ⊢ (6 − 6) = 0 |
| 9 | 6, 8 | eqtri 2752 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
| 10 | 9 | opeq2i 4837 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
| 11 | 2t6m3t4e0 48330 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
| 12 | 11 | opeq2i 4837 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
| 13 | 10, 12 | preq12i 4698 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
| 14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 15 | 14 | oveq2i 7380 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
| 16 | 2z 12543 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 17 | 3z 12544 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 18 | 6nn 12253 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 19 | 18 | nnzi 12535 | . . . . . 6 ⊢ 6 ∈ ℤ |
| 20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
| 22 | 20, 21 | zlmodzxzscm 48339 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
| 23 | 16, 17, 19, 22 | mp3an 1463 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 24 | 15, 23 | eqtri 2752 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 26 | 25 | oveq2i 7380 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
| 27 | 4z 12545 | . . . . . 6 ⊢ 4 ∈ ℤ | |
| 28 | 20, 21 | zlmodzxzscm 48339 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 29 | 17, 16, 27, 28 | mp3an 1463 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 30 | 26, 29 | eqtri 2752 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 31 | 24, 30 | oveq12i 7381 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 32 | zmulcl 12560 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
| 33 | 16, 17, 32 | mp2an 692 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
| 34 | zmulcl 12560 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
| 35 | 17, 16, 34 | mp2an 692 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
| 36 | zmulcl 12560 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
| 37 | 16, 19, 36 | mp2an 692 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
| 38 | zmulcl 12560 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
| 39 | 17, 27, 38 | mp2an 692 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
| 40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
| 41 | 20, 40 | zlmodzxzsub 48342 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
| 42 | 33, 35, 37, 39, 41 | mp4an 693 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 43 | 31, 42 | eqtri 2752 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
| 45 | 13, 43, 44 | 3eqtr4i 2762 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cpr 4587 〈cop 4591 ‘cfv 6499 (class class class)co 7369 0cc0 11046 1c1 11047 + caddc 11049 · cmul 11051 − cmin 11383 2c2 12219 3c3 12220 4c4 12221 6c6 12223 ℤcz 12507 ·𝑠 cvsca 17201 -gcsg 18850 ℤringczring 21389 freeLMod cfrlm 21689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-addf 11125 ax-mulf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17381 df-prds 17387 df-pws 17389 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-cring 20157 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-sra 21113 df-rgmod 21114 df-cnfld 21298 df-zring 21390 df-dsmm 21675 df-frlm 21690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |