![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version |
Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 12374 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
2 | 1 | 2timesi 12431 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
3 | 3p3e6 12445 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
4 | 2, 3 | eqtri 2768 | . . . . . 6 ⊢ (2 · 3) = 6 |
5 | 3t2e6 12459 | . . . . . 6 ⊢ (3 · 2) = 6 | |
6 | 4, 5 | oveq12i 7460 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
7 | 6cn 12384 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 7 | subidi 11607 | . . . . 5 ⊢ (6 − 6) = 0 |
9 | 6, 8 | eqtri 2768 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
10 | 9 | opeq2i 4901 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
11 | 2t6m3t4e0 48073 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
12 | 11 | opeq2i 4901 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
13 | 10, 12 | preq12i 4763 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
15 | 14 | oveq2i 7459 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
16 | 2z 12675 | . . . . . 6 ⊢ 2 ∈ ℤ | |
17 | 3z 12676 | . . . . . 6 ⊢ 3 ∈ ℤ | |
18 | 6nn 12382 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
19 | 18 | nnzi 12667 | . . . . . 6 ⊢ 6 ∈ ℤ |
20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
22 | 20, 21 | zlmodzxzscm 48082 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
23 | 16, 17, 19, 22 | mp3an 1461 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
24 | 15, 23 | eqtri 2768 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
26 | 25 | oveq2i 7459 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
27 | 4z 12677 | . . . . . 6 ⊢ 4 ∈ ℤ | |
28 | 20, 21 | zlmodzxzscm 48082 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
29 | 17, 16, 27, 28 | mp3an 1461 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
30 | 26, 29 | eqtri 2768 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
31 | 24, 30 | oveq12i 7460 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
32 | zmulcl 12692 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
33 | 16, 17, 32 | mp2an 691 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
34 | zmulcl 12692 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
35 | 17, 16, 34 | mp2an 691 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
36 | zmulcl 12692 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
37 | 16, 19, 36 | mp2an 691 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
38 | zmulcl 12692 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
39 | 17, 27, 38 | mp2an 691 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
41 | 20, 40 | zlmodzxzsub 48085 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
42 | 33, 35, 37, 39, 41 | mp4an 692 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
43 | 31, 42 | eqtri 2768 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
45 | 13, 43, 44 | 3eqtr4i 2778 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cpr 4650 〈cop 4654 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 2c2 12348 3c3 12349 4c4 12350 6c6 12352 ℤcz 12639 ·𝑠 cvsca 17315 -gcsg 18975 ℤringczring 21480 freeLMod cfrlm 21789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-zring 21481 df-dsmm 21775 df-frlm 21790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |