Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version |
Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 11768 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
2 | 1 | 2timesi 11825 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
3 | 3p3e6 11839 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
4 | 2, 3 | eqtri 2781 | . . . . . 6 ⊢ (2 · 3) = 6 |
5 | 3t2e6 11853 | . . . . . 6 ⊢ (3 · 2) = 6 | |
6 | 4, 5 | oveq12i 7168 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
7 | 6cn 11778 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 7 | subidi 11008 | . . . . 5 ⊢ (6 − 6) = 0 |
9 | 6, 8 | eqtri 2781 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
10 | 9 | opeq2i 4770 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
11 | 2t6m3t4e0 45166 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
12 | 11 | opeq2i 4770 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
13 | 10, 12 | preq12i 4634 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
15 | 14 | oveq2i 7167 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
16 | 2z 12066 | . . . . . 6 ⊢ 2 ∈ ℤ | |
17 | 3z 12067 | . . . . . 6 ⊢ 3 ∈ ℤ | |
18 | 6nn 11776 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
19 | 18 | nnzi 12058 | . . . . . 6 ⊢ 6 ∈ ℤ |
20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
22 | 20, 21 | zlmodzxzscm 45175 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
23 | 16, 17, 19, 22 | mp3an 1458 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
24 | 15, 23 | eqtri 2781 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
26 | 25 | oveq2i 7167 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
27 | 4z 12068 | . . . . . 6 ⊢ 4 ∈ ℤ | |
28 | 20, 21 | zlmodzxzscm 45175 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
29 | 17, 16, 27, 28 | mp3an 1458 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
30 | 26, 29 | eqtri 2781 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
31 | 24, 30 | oveq12i 7168 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
32 | zmulcl 12083 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
33 | 16, 17, 32 | mp2an 691 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
34 | zmulcl 12083 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
35 | 17, 16, 34 | mp2an 691 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
36 | zmulcl 12083 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
37 | 16, 19, 36 | mp2an 691 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
38 | zmulcl 12083 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
39 | 17, 27, 38 | mp2an 691 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
41 | 20, 40 | zlmodzxzsub 45178 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
42 | 33, 35, 37, 39, 41 | mp4an 692 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
43 | 31, 42 | eqtri 2781 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
45 | 13, 43, 44 | 3eqtr4i 2791 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 {cpr 4527 〈cop 4531 ‘cfv 6340 (class class class)co 7156 0cc0 10588 1c1 10589 + caddc 10591 · cmul 10593 − cmin 10921 2c2 11742 3c3 11743 4c4 11744 6c6 11746 ℤcz 12033 ·𝑠 cvsca 16640 -gcsg 18184 ℤringzring 20251 freeLMod cfrlm 20524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-starv 16651 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-unif 16659 df-hom 16660 df-cco 16661 df-0g 16786 df-prds 16792 df-pws 16794 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 df-minusg 18186 df-sbg 18187 df-subg 18356 df-cmn 18988 df-mgp 19321 df-ur 19333 df-ring 19380 df-cring 19381 df-subrg 19614 df-lmod 19717 df-lss 19785 df-sra 20025 df-rgmod 20026 df-cnfld 20180 df-zring 20252 df-dsmm 20510 df-frlm 20525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |