| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version | ||
| Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
| zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
| zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
| zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12206 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 2 | 1 | 2timesi 12258 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
| 3 | 3p3e6 12272 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2754 | . . . . . 6 ⊢ (2 · 3) = 6 |
| 5 | 3t2e6 12286 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 6 | 4, 5 | oveq12i 7358 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
| 7 | 6cn 12216 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 7 | subidi 11432 | . . . . 5 ⊢ (6 − 6) = 0 |
| 9 | 6, 8 | eqtri 2754 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
| 10 | 9 | opeq2i 4826 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
| 11 | 2t6m3t4e0 48447 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
| 12 | 11 | opeq2i 4826 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
| 13 | 10, 12 | preq12i 4688 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
| 14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 15 | 14 | oveq2i 7357 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
| 16 | 2z 12504 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 17 | 3z 12505 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 18 | 6nn 12214 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 19 | 18 | nnzi 12496 | . . . . . 6 ⊢ 6 ∈ ℤ |
| 20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
| 22 | 20, 21 | zlmodzxzscm 48456 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
| 23 | 16, 17, 19, 22 | mp3an 1463 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 24 | 15, 23 | eqtri 2754 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
| 25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 26 | 25 | oveq2i 7357 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
| 27 | 4z 12506 | . . . . . 6 ⊢ 4 ∈ ℤ | |
| 28 | 20, 21 | zlmodzxzscm 48456 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 29 | 17, 16, 27, 28 | mp3an 1463 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 30 | 26, 29 | eqtri 2754 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
| 31 | 24, 30 | oveq12i 7358 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
| 32 | zmulcl 12521 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
| 33 | 16, 17, 32 | mp2an 692 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
| 34 | zmulcl 12521 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
| 35 | 17, 16, 34 | mp2an 692 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
| 36 | zmulcl 12521 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
| 37 | 16, 19, 36 | mp2an 692 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
| 38 | zmulcl 12521 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
| 39 | 17, 27, 38 | mp2an 692 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
| 40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
| 41 | 20, 40 | zlmodzxzsub 48459 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
| 42 | 33, 35, 37, 39, 41 | mp4an 693 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 43 | 31, 42 | eqtri 2754 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
| 44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
| 45 | 13, 43, 44 | 3eqtr4i 2764 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cpr 4575 〈cop 4579 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 2c2 12180 3c3 12181 4c4 12182 6c6 12184 ℤcz 12468 ·𝑠 cvsca 17165 -gcsg 18848 ℤringczring 21383 freeLMod cfrlm 21683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-zring 21384 df-dsmm 21669 df-frlm 21684 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |