Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequa Structured version   Visualization version   GIF version

Theorem zlmodzxzequa 48225
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzequa.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzequa.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequa.t = ( ·𝑠𝑍)
zlmodzxzequa.m = (-g𝑍)
zlmodzxzequa.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzequa.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxzequa ((2 𝐴) (3 𝐵)) = 0

Proof of Theorem zlmodzxzequa
StepHypRef Expression
1 3cn 12374 . . . . . . . 8 3 ∈ ℂ
212timesi 12431 . . . . . . 7 (2 · 3) = (3 + 3)
3 3p3e6 12445 . . . . . . 7 (3 + 3) = 6
42, 3eqtri 2768 . . . . . 6 (2 · 3) = 6
5 3t2e6 12459 . . . . . 6 (3 · 2) = 6
64, 5oveq12i 7460 . . . . 5 ((2 · 3) − (3 · 2)) = (6 − 6)
7 6cn 12384 . . . . . 6 6 ∈ ℂ
87subidi 11607 . . . . 5 (6 − 6) = 0
96, 8eqtri 2768 . . . 4 ((2 · 3) − (3 · 2)) = 0
109opeq2i 4901 . . 3 ⟨0, ((2 · 3) − (3 · 2))⟩ = ⟨0, 0⟩
11 2t6m3t4e0 48073 . . . 4 ((2 · 6) − (3 · 4)) = 0
1211opeq2i 4901 . . 3 ⟨1, ((2 · 6) − (3 · 4))⟩ = ⟨1, 0⟩
1310, 12preq12i 4763 . 2 {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
14 zlmodzxzequa.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
1514oveq2i 7459 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
16 2z 12675 . . . . . 6 2 ∈ ℤ
17 3z 12676 . . . . . 6 3 ∈ ℤ
18 6nn 12382 . . . . . . 7 6 ∈ ℕ
1918nnzi 12667 . . . . . 6 6 ∈ ℤ
20 zlmodzxzequa.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
21 zlmodzxzequa.t . . . . . . 7 = ( ·𝑠𝑍)
2220, 21zlmodzxzscm 48082 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
2316, 17, 19, 22mp3an 1461 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
2415, 23eqtri 2768 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
25 zlmodzxzequa.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
2625oveq2i 7459 . . . . 5 (3 𝐵) = (3 {⟨0, 2⟩, ⟨1, 4⟩})
27 4z 12677 . . . . . 6 4 ∈ ℤ
2820, 21zlmodzxzscm 48082 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩})
2917, 16, 27, 28mp3an 1461 . . . . 5 (3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}
3026, 29eqtri 2768 . . . 4 (3 𝐵) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}
3124, 30oveq12i 7460 . . 3 ((2 𝐴) (3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩})
32 zmulcl 12692 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
3316, 17, 32mp2an 691 . . . 4 (2 · 3) ∈ ℤ
34 zmulcl 12692 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ)
3517, 16, 34mp2an 691 . . . 4 (3 · 2) ∈ ℤ
36 zmulcl 12692 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
3716, 19, 36mp2an 691 . . . 4 (2 · 6) ∈ ℤ
38 zmulcl 12692 . . . . 5 ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ)
3917, 27, 38mp2an 691 . . . 4 (3 · 4) ∈ ℤ
40 zlmodzxzequa.m . . . . 5 = (-g𝑍)
4120, 40zlmodzxzsub 48085 . . . 4 ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩})
4233, 35, 37, 39, 41mp4an 692 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩}
4331, 42eqtri 2768 . 2 ((2 𝐴) (3 𝐵)) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩}
44 zlmodzxzequa.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
4513, 43, 443eqtr4i 2778 1 ((2 𝐴) (3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cpr 4650  cop 4654  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  2c2 12348  3c3 12349  4c4 12350  6c6 12352  cz 12639   ·𝑠 cvsca 17315  -gcsg 18975  ringczring 21480   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-dsmm 21775  df-frlm 21790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator