|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > opthreg | Structured version Visualization version GIF version | ||
| Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 9632 (via the preleq 9656 step). See df-op 4633 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof shortened by AV, 15-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| opthreg.1 | ⊢ 𝐴 ∈ V | 
| opthreg.2 | ⊢ 𝐵 ∈ V | 
| opthreg.3 | ⊢ 𝐶 ∈ V | 
| opthreg.4 | ⊢ 𝐷 ∈ V | 
| Ref | Expression | 
|---|---|
| opthreg | ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opthreg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 4762 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐵} | 
| 3 | opthreg.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 4 | 3 | prid1 4762 | . . . 4 ⊢ 𝐶 ∈ {𝐶, 𝐷} | 
| 5 | prex 5437 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V | |
| 6 | 5 | preleq 9656 | . . . 4 ⊢ (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) | 
| 7 | 2, 4, 6 | mpanl12 702 | . . 3 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) | 
| 8 | preq1 4733 | . . . . . 6 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 9 | 8 | eqeq1d 2739 | . . . . 5 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) | 
| 10 | opthreg.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 11 | opthreg.4 | . . . . . 6 ⊢ 𝐷 ∈ V | |
| 12 | 10, 11 | preqr2 4849 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) | 
| 13 | 9, 12 | biimtrdi 253 | . . . 4 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) | 
| 14 | 13 | imdistani 568 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 15 | 7, 14 | syl 17 | . 2 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 16 | preq1 4733 | . . . 4 ⊢ (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) | 
| 18 | preq12 4735 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) | |
| 19 | 18 | preq2d 4740 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) | 
| 20 | 17, 19 | eqtrd 2777 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) | 
| 21 | 15, 20 | impbii 209 | 1 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {cpr 4628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-reg 9632 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 df-fr 5637 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |