MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthreg Structured version   Visualization version   GIF version

Theorem opthreg 9658
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 9632 (via the preleq 9656 step). See df-op 4633 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof shortened by AV, 15-Jun-2022.)
Hypotheses
Ref Expression
opthreg.1 𝐴 ∈ V
opthreg.2 𝐵 ∈ V
opthreg.3 𝐶 ∈ V
opthreg.4 𝐷 ∈ V
Assertion
Ref Expression
opthreg ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opthreg
StepHypRef Expression
1 opthreg.1 . . . . 5 𝐴 ∈ V
21prid1 4762 . . . 4 𝐴 ∈ {𝐴, 𝐵}
3 opthreg.3 . . . . 5 𝐶 ∈ V
43prid1 4762 . . . 4 𝐶 ∈ {𝐶, 𝐷}
5 prex 5437 . . . . 5 {𝐴, 𝐵} ∈ V
65preleq 9656 . . . 4 (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}))
72, 4, 6mpanl12 702 . . 3 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}))
8 preq1 4733 . . . . . 6 (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵})
98eqeq1d 2739 . . . . 5 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷}))
10 opthreg.2 . . . . . 6 𝐵 ∈ V
11 opthreg.4 . . . . . 6 𝐷 ∈ V
1210, 11preqr2 4849 . . . . 5 ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)
139, 12biimtrdi 253 . . . 4 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))
1413imdistani 568 . . 3 ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
157, 14syl 17 . 2 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶𝐵 = 𝐷))
16 preq1 4733 . . . 4 (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}})
1716adantr 480 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}})
18 preq12 4735 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
1918preq2d 4740 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}})
2017, 19eqtrd 2777 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}})
2115, 20impbii 209 1 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {cpr 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-eprel 5584  df-fr 5637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator