| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthreg | Structured version Visualization version GIF version | ||
| Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 9478 (via the preleq 9506 step). See df-op 4580 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof shortened by AV, 15-Jun-2022.) |
| Ref | Expression |
|---|---|
| opthreg.1 | ⊢ 𝐴 ∈ V |
| opthreg.2 | ⊢ 𝐵 ∈ V |
| opthreg.3 | ⊢ 𝐶 ∈ V |
| opthreg.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opthreg | ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthreg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 4712 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | opthreg.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 4 | 3 | prid1 4712 | . . . 4 ⊢ 𝐶 ∈ {𝐶, 𝐷} |
| 5 | prex 5373 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V | |
| 6 | 5 | preleq 9506 | . . . 4 ⊢ (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
| 7 | 2, 4, 6 | mpanl12 702 | . . 3 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
| 8 | preq1 4683 | . . . . . 6 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
| 9 | 8 | eqeq1d 2733 | . . . . 5 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
| 10 | opthreg.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 11 | opthreg.4 | . . . . . 6 ⊢ 𝐷 ∈ V | |
| 12 | 10, 11 | preqr2 4798 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
| 13 | 9, 12 | biimtrdi 253 | . . . 4 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
| 14 | 13 | imdistani 568 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 15 | 7, 14 | syl 17 | . 2 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 16 | preq1 4683 | . . . 4 ⊢ (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) |
| 18 | preq12 4685 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) | |
| 19 | 18 | preq2d 4690 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
| 20 | 17, 19 | eqtrd 2766 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |