MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2vtxeu Structured version   Visualization version   GIF version

Theorem uspgredg2vtxeu 27114
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 6-Dec-2020.)
Assertion
Ref Expression
uspgredg2vtxeu ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑌

Proof of Theorem uspgredg2vtxeu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 27073 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 eqid 2758 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2758 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3upgredg2vtx 27038 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})
51, 4syl3an1 1160 . 2 ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})
6 eqtr2 2779 . . . . 5 ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥})
7 vex 3413 . . . . . 6 𝑦 ∈ V
8 vex 3413 . . . . . 6 𝑥 ∈ V
97, 8preqr2 4740 . . . . 5 ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥)
106, 9syl 17 . . . 4 ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥)
1110a1i 11 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌𝐸) ∧ (𝑦 ∈ (Vtx‘𝐺) ∧ 𝑥 ∈ (Vtx‘𝐺))) → ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥))
1211ralrimivva 3120 . 2 ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌𝐸) → ∀𝑦 ∈ (Vtx‘𝐺)∀𝑥 ∈ (Vtx‘𝐺)((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥))
13 preq2 4630 . . . 4 (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥})
1413eqeq2d 2769 . . 3 (𝑦 = 𝑥 → (𝐸 = {𝑌, 𝑦} ↔ 𝐸 = {𝑌, 𝑥}))
1514reu4 3647 . 2 (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ (∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ∧ ∀𝑦 ∈ (Vtx‘𝐺)∀𝑥 ∈ (Vtx‘𝐺)((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥)))
165, 12, 15sylanbrc 586 1 ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071  ∃!wreu 3072  {cpr 4527  cfv 6339  Vtxcvtx 26893  Edgcedg 26944  UPGraphcupgr 26977  USPGraphcuspgr 27045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-dju 9368  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-xnn0 12012  df-z 12026  df-uz 12288  df-fz 12945  df-hash 13746  df-edg 26945  df-upgr 26979  df-uspgr 27047
This theorem is referenced by:  usgredg2vtxeu  27115  uspgredg2vlem  27117  uspgredg2v  27118
  Copyright terms: Public domain W3C validator