![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgredg2vtxeu | Structured version Visualization version GIF version |
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 6-Dec-2020.) |
Ref | Expression |
---|---|
uspgredg2vtxeu | ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr 29047 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
2 | eqid 2725 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2725 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 2, 3 | upgredg2vtx 29010 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
5 | 1, 4 | syl3an1 1160 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
6 | eqtr2 2749 | . . . . 5 ⊢ ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
7 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
8 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | 7, 8 | preqr2 4851 | . . . . 5 ⊢ ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥) |
11 | 10 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) ∧ (𝑦 ∈ (Vtx‘𝐺) ∧ 𝑥 ∈ (Vtx‘𝐺))) → ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
12 | 11 | ralrimivva 3191 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∀𝑦 ∈ (Vtx‘𝐺)∀𝑥 ∈ (Vtx‘𝐺)((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
13 | preq2 4739 | . . . 4 ⊢ (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
14 | 13 | eqeq2d 2736 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐸 = {𝑌, 𝑦} ↔ 𝐸 = {𝑌, 𝑥})) |
15 | 14 | reu4 3724 | . 2 ⊢ (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ (∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ∧ ∀𝑦 ∈ (Vtx‘𝐺)∀𝑥 ∈ (Vtx‘𝐺)((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥))) |
16 | 5, 12, 15 | sylanbrc 581 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ∃!wreu 3362 {cpr 4631 ‘cfv 6547 Vtxcvtx 28865 Edgcedg 28916 UPGraphcupgr 28949 USPGraphcuspgr 29017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13517 df-hash 14322 df-edg 28917 df-upgr 28951 df-uspgr 29019 |
This theorem is referenced by: usgredg2vtxeu 29090 uspgredg2vlem 29092 uspgredg2v 29093 |
Copyright terms: Public domain | W3C validator |