![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgredg2vtxeu | Structured version Visualization version GIF version |
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 6-Dec-2020.) |
Ref | Expression |
---|---|
uspgredg2vtxeu | ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr 26482 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
2 | eqid 2825 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2825 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 2, 3 | upgredg2vtx 26447 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
5 | 1, 4 | syl3an1 1206 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
6 | eqtr2 2847 | . . . . 5 ⊢ ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
7 | vex 3417 | . . . . . 6 ⊢ 𝑦 ∈ V | |
8 | vex 3417 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | 7, 8 | preqr2 4598 | . . . . 5 ⊢ ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥) |
11 | 10 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) ∧ (𝑦 ∈ (Vtx‘𝐺) ∧ 𝑥 ∈ (Vtx‘𝐺))) → ((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
12 | 11 | ralrimivva 3180 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∀𝑦 ∈ (Vtx‘𝐺)∀𝑥 ∈ (Vtx‘𝐺)((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
13 | preq2 4489 | . . . 4 ⊢ (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
14 | 13 | eqeq2d 2835 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐸 = {𝑌, 𝑦} ↔ 𝐸 = {𝑌, 𝑥})) |
15 | 14 | reu4 3625 | . 2 ⊢ (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ (∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ∧ ∀𝑦 ∈ (Vtx‘𝐺)∀𝑥 ∈ (Vtx‘𝐺)((𝐸 = {𝑌, 𝑦} ∧ 𝐸 = {𝑌, 𝑥}) → 𝑦 = 𝑥))) |
16 | 5, 12, 15 | sylanbrc 578 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 ∃!wreu 3119 {cpr 4401 ‘cfv 6127 Vtxcvtx 26301 Edgcedg 26352 UPGraphcupgr 26385 USPGraphcuspgr 26454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-xnn0 11698 df-z 11712 df-uz 11976 df-fz 12627 df-hash 13418 df-edg 26353 df-upgr 26387 df-uspgr 26456 |
This theorem is referenced by: usgredg2vtxeu 26524 uspgredg2vlem 26526 uspgredg2v 26527 |
Copyright terms: Public domain | W3C validator |