MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgreu Structured version   Visualization version   GIF version

Theorem usgredgreu 29196
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredgreu ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑦,𝑌

Proof of Theorem usgredgreu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . 3 𝑉 = (Vtx‘𝐺)
2 usgredg3.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2usgredg4 29195 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
4 eqtr2 2752 . . . . 5 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥})
5 vex 3440 . . . . . 6 𝑦 ∈ V
6 vex 3440 . . . . . 6 𝑥 ∈ V
75, 6preqr2 4798 . . . . 5 ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥)
84, 7syl 17 . . . 4 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)
98a1i 11 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) ∧ (𝑦𝑉𝑥𝑉)) → (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))
109ralrimivva 3175 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∀𝑦𝑉𝑥𝑉 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))
11 preq2 4684 . . . 4 (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥})
1211eqeq2d 2742 . . 3 (𝑦 = 𝑥 → ((𝐸𝑋) = {𝑌, 𝑦} ↔ (𝐸𝑋) = {𝑌, 𝑥}))
1312reu4 3685 . 2 (∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ∧ ∀𝑦𝑉𝑥𝑉 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)))
143, 10, 13sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  {cpr 4575  dom cdm 5614  cfv 6481  Vtxcvtx 28974  iEdgciedg 28975  USGraphcusgr 29127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-edg 29026  df-umgr 29061  df-usgr 29129
This theorem is referenced by:  usgredg2vtxeuALT  29200  usgredg2vlem1  29203  usgredg2vlem2  29204
  Copyright terms: Public domain W3C validator