Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgredgreu | Structured version Visualization version GIF version |
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgredg3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgredg3.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgredgreu | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgredg3.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | usgredg3.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | usgredg4 27487 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
4 | eqtr2 2762 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
5 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | preqr2 4777 | . . . . 5 ⊢ ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥) |
9 | 8 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) ∧ (𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) → (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
10 | 9 | ralrimivva 3114 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∀𝑦 ∈ 𝑉 ∀𝑥 ∈ 𝑉 (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
11 | preq2 4667 | . . . 4 ⊢ (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
12 | 11 | eqeq2d 2749 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐸‘𝑋) = {𝑌, 𝑦} ↔ (𝐸‘𝑋) = {𝑌, 𝑥})) |
13 | 12 | reu4 3661 | . 2 ⊢ (∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ↔ (∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ∧ ∀𝑦 ∈ 𝑉 ∀𝑥 ∈ 𝑉 (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))) |
14 | 3, 10, 13 | sylanbrc 582 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 {cpr 4560 dom cdm 5580 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 USGraphcusgr 27422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-edg 27321 df-umgr 27356 df-usgr 27424 |
This theorem is referenced by: usgredg2vtxeuALT 27492 usgredg2vlem1 27495 usgredg2vlem2 27496 |
Copyright terms: Public domain | W3C validator |