![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredgreu | Structured version Visualization version GIF version |
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgredg3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgredg3.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgredgreu | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgredg3.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | usgredg3.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | usgredg4 29072 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
4 | eqtr2 2749 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
5 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | preqr2 4846 | . . . . 5 ⊢ ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥) |
9 | 8 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) ∧ (𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) → (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
10 | 9 | ralrimivva 3191 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∀𝑦 ∈ 𝑉 ∀𝑥 ∈ 𝑉 (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)) |
11 | preq2 4734 | . . . 4 ⊢ (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥}) | |
12 | 11 | eqeq2d 2736 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐸‘𝑋) = {𝑌, 𝑦} ↔ (𝐸‘𝑋) = {𝑌, 𝑥})) |
13 | 12 | reu4 3719 | . 2 ⊢ (∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ↔ (∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ∧ ∀𝑦 ∈ 𝑉 ∀𝑥 ∈ 𝑉 (((𝐸‘𝑋) = {𝑌, 𝑦} ∧ (𝐸‘𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))) |
14 | 3, 10, 13 | sylanbrc 581 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ∃!wreu 3362 {cpr 4626 dom cdm 5672 ‘cfv 6542 Vtxcvtx 28851 iEdgciedg 28852 USGraphcusgr 29004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 df-edg 28903 df-umgr 28938 df-usgr 29006 |
This theorem is referenced by: usgredg2vtxeuALT 29077 usgredg2vlem1 29080 usgredg2vlem2 29081 |
Copyright terms: Public domain | W3C validator |