MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2bas Structured version   Visualization version   GIF version

Theorem symg2bas 19254
Description: The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 19252. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2bas ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})

Proof of Theorem symg2bas
StepHypRef Expression
1 eqid 2732 . . . . 5 (SymGrp‘{𝐽}) = (SymGrp‘{𝐽})
2 eqid 2732 . . . . 5 (Base‘(SymGrp‘{𝐽})) = (Base‘(SymGrp‘{𝐽}))
3 eqid 2732 . . . . 5 {𝐽} = {𝐽}
41, 2, 3symg1bas 19252 . . . 4 (𝐽𝑊 → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
54ad2antll 727 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
6 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
7 symg1bas.1 . . . . . 6 𝐺 = (SymGrp‘𝐴)
8 symg2bas.0 . . . . . . . 8 𝐴 = {𝐼, 𝐽}
9 df-pr 4630 . . . . . . . . 9 {𝐼, 𝐽} = ({𝐼} ∪ {𝐽})
10 sneq 4637 . . . . . . . . . . . 12 (𝐼 = 𝐽 → {𝐼} = {𝐽})
1110uneq1d 4161 . . . . . . . . . . 11 (𝐼 = 𝐽 → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
1211adantr 481 . . . . . . . . . 10 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
13 unidm 4151 . . . . . . . . . 10 ({𝐽} ∪ {𝐽}) = {𝐽}
1412, 13eqtrdi 2788 . . . . . . . . 9 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = {𝐽})
159, 14eqtrid 2784 . . . . . . . 8 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {𝐼, 𝐽} = {𝐽})
168, 15eqtrid 2784 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐴 = {𝐽})
1716fveq2d 6892 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (SymGrp‘𝐴) = (SymGrp‘{𝐽}))
187, 17eqtrid 2784 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐺 = (SymGrp‘{𝐽}))
1918fveq2d 6892 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘𝐺) = (Base‘(SymGrp‘{𝐽})))
206, 19eqtrid 2784 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = (Base‘(SymGrp‘{𝐽})))
21 id 22 . . . . . . . . 9 (𝐼 = 𝐽𝐼 = 𝐽)
2221, 21opeq12d 4880 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2322adantr 481 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2423preq1d 4742 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
25 eqid 2732 . . . . . . 7 𝐽, 𝐽⟩ = ⟨𝐽, 𝐽
26 opex 5463 . . . . . . . 8 𝐽, 𝐽⟩ ∈ V
2726, 26preqsn 4861 . . . . . . 7 ({⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ↔ (⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩))
2825, 25, 27mpbir2an 709 . . . . . 6 {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
2924, 28eqtrdi 2788 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩})
30 opeq1 4872 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐽⟩ = ⟨𝐽, 𝐽⟩)
31 opeq2 4873 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐽, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
3230, 31preq12d 4744 . . . . . . 7 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
3332, 28eqtrdi 2788 . . . . . 6 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3433adantr 481 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3529, 34preq12d 4744 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}})
36 eqid 2732 . . . . 5 {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
37 snex 5430 . . . . . 6 {⟨𝐽, 𝐽⟩} ∈ V
3837, 37preqsn 4861 . . . . 5 ({{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}} ↔ ({⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ∧ {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}))
3936, 36, 38mpbir2an 709 . . . 4 {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}}
4035, 39eqtrdi 2788 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}})
415, 20, 403eqtr4d 2782 . 2 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
426fvexi 6902 . . . 4 𝐵 ∈ V
4342a1i 11 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 ∈ V)
44 neqne 2948 . . . . . . 7 𝐼 = 𝐽𝐼𝐽)
4544anim2i 617 . . . . . 6 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
46 df-3an 1089 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) ↔ ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
4745, 46sylibr 233 . . . . 5 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → (𝐼𝑉𝐽𝑊𝐼𝐽))
4847ancoms 459 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (𝐼𝑉𝐽𝑊𝐼𝐽))
497, 6, 8symg2hash 19253 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
5048, 49syl 17 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (♯‘𝐵) = 2)
51 id 22 . . . . . . . 8 (𝐼𝑉𝐼𝑉)
5251ancri 550 . . . . . . 7 (𝐼𝑉 → (𝐼𝑉𝐼𝑉))
53 id 22 . . . . . . . 8 (𝐽𝑊𝐽𝑊)
5453ancri 550 . . . . . . 7 (𝐽𝑊 → (𝐽𝑊𝐽𝑊))
5552, 54anim12i 613 . . . . . 6 ((𝐼𝑉𝐽𝑊) → ((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)))
56 df-ne 2941 . . . . . . 7 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
57 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
5857ancri 550 . . . . . . 7 (𝐼𝐽 → (𝐼𝐽𝐼𝐽))
5956, 58sylbir 234 . . . . . 6 𝐼 = 𝐽 → (𝐼𝐽𝐼𝐽))
60 f1oprg 6875 . . . . . . 7 (((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) → ((𝐼𝐽𝐼𝐽) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
6160imp 407 . . . . . 6 ((((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) ∧ (𝐼𝐽𝐼𝐽)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6255, 59, 61syl2anr 597 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
63 eqidd 2733 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩})
64 id 22 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → 𝐴 = {𝐼, 𝐽})
6563, 64, 64f1oeq123d 6824 . . . . . 6 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
668, 65ax-mp 5 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6762, 66sylibr 233 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
68 prex 5431 . . . . 5 {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V
697, 6elsymgbas2 19234 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴))
7068, 69ax-mp 5 . . . 4 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
7167, 70sylibr 233 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵)
72 f1oprswap 6874 . . . . . 6 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
73 eqidd 2733 . . . . . . . 8 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
7473, 64, 64f1oeq123d 6824 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
758, 74ax-mp 5 . . . . . 6 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
7672, 75sylibr 233 . . . . 5 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
7776adantl 482 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
78 prex 5431 . . . . 5 {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V
797, 6elsymgbas2 19234 . . . . 5 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴))
8078, 79ax-mp 5 . . . 4 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
8177, 80sylibr 233 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵)
82 opex 5463 . . . . . 6 𝐼, 𝐼⟩ ∈ V
8382, 26pm3.2i 471 . . . . 5 (⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V)
84 opex 5463 . . . . . 6 𝐼, 𝐽⟩ ∈ V
85 opex 5463 . . . . . 6 𝐽, 𝐼⟩ ∈ V
8684, 85pm3.2i 471 . . . . 5 (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)
8783, 86pm3.2i 471 . . . 4 ((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V))
88 opthg2 5478 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ ↔ (𝐼 = 𝐼𝐼 = 𝐽)))
89 eqtr 2755 . . . . . . . . . . 11 ((𝐼 = 𝐼𝐼 = 𝐽) → 𝐼 = 𝐽)
9088, 89syl6bi 252 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ → 𝐼 = 𝐽))
9190necon3d 2961 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9291com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9356, 92sylbir 234 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9493imp 407 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩)
9552adantr 481 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝑊) → (𝐼𝑉𝐼𝑉))
96 opthg 5476 . . . . . . . . . . . 12 ((𝐼𝑉𝐼𝑉) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
9795, 96syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
98 simpl 483 . . . . . . . . . . 11 ((𝐼 = 𝐽𝐼 = 𝐼) → 𝐼 = 𝐽)
9997, 98syl6bi 252 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ → 𝐼 = 𝐽))
10099necon3d 2961 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
101100com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
10256, 101sylbir 234 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
103102imp 407 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩)
10494, 103jca 512 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
105104orcd 871 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)))
106 prneimg 4854 . . . 4 (((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)) → (((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}))
10787, 105, 106mpsyl 68 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
108 hash2prd 14432 . . . 4 ((𝐵 ∈ V ∧ (♯‘𝐵) = 2) → (({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}}))
109108imp 407 . . 3 (((𝐵 ∈ V ∧ (♯‘𝐵) = 2) ∧ ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11043, 50, 71, 81, 107, 109syl23anc 1377 . 2 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11141, 110pm2.61ian 810 1 ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cun 3945  {csn 4627  {cpr 4629  cop 4633  1-1-ontowf1o 6539  cfv 6540  2c2 12263  chash 14286  Basecbs 17140  SymGrpcsymg 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-fac 14230  df-bc 14259  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-efmnd 18746  df-symg 19229
This theorem is referenced by:  psgnprfval  19383  m2detleiblem1  22117  m2detleiblem5  22118  m2detleiblem6  22119  m2detleiblem3  22122  m2detleiblem4  22123  m2detleib  22124
  Copyright terms: Public domain W3C validator