MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2bas Structured version   Visualization version   GIF version

Theorem symg2bas 19434
Description: The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 19432. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2bas ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})

Proof of Theorem symg2bas
StepHypRef Expression
1 eqid 2740 . . . . 5 (SymGrp‘{𝐽}) = (SymGrp‘{𝐽})
2 eqid 2740 . . . . 5 (Base‘(SymGrp‘{𝐽})) = (Base‘(SymGrp‘{𝐽}))
3 eqid 2740 . . . . 5 {𝐽} = {𝐽}
41, 2, 3symg1bas 19432 . . . 4 (𝐽𝑊 → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
54ad2antll 728 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
6 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
7 symg1bas.1 . . . . . 6 𝐺 = (SymGrp‘𝐴)
8 symg2bas.0 . . . . . . . 8 𝐴 = {𝐼, 𝐽}
9 df-pr 4651 . . . . . . . . 9 {𝐼, 𝐽} = ({𝐼} ∪ {𝐽})
10 sneq 4658 . . . . . . . . . . . 12 (𝐼 = 𝐽 → {𝐼} = {𝐽})
1110uneq1d 4190 . . . . . . . . . . 11 (𝐼 = 𝐽 → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
1211adantr 480 . . . . . . . . . 10 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
13 unidm 4180 . . . . . . . . . 10 ({𝐽} ∪ {𝐽}) = {𝐽}
1412, 13eqtrdi 2796 . . . . . . . . 9 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = {𝐽})
159, 14eqtrid 2792 . . . . . . . 8 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {𝐼, 𝐽} = {𝐽})
168, 15eqtrid 2792 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐴 = {𝐽})
1716fveq2d 6924 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (SymGrp‘𝐴) = (SymGrp‘{𝐽}))
187, 17eqtrid 2792 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐺 = (SymGrp‘{𝐽}))
1918fveq2d 6924 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘𝐺) = (Base‘(SymGrp‘{𝐽})))
206, 19eqtrid 2792 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = (Base‘(SymGrp‘{𝐽})))
21 id 22 . . . . . . . . 9 (𝐼 = 𝐽𝐼 = 𝐽)
2221, 21opeq12d 4905 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2322adantr 480 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2423preq1d 4764 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
25 eqid 2740 . . . . . . 7 𝐽, 𝐽⟩ = ⟨𝐽, 𝐽
26 opex 5484 . . . . . . . 8 𝐽, 𝐽⟩ ∈ V
2726, 26preqsn 4886 . . . . . . 7 ({⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ↔ (⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩))
2825, 25, 27mpbir2an 710 . . . . . 6 {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
2924, 28eqtrdi 2796 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩})
30 opeq1 4897 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐽⟩ = ⟨𝐽, 𝐽⟩)
31 opeq2 4898 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐽, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
3230, 31preq12d 4766 . . . . . . 7 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
3332, 28eqtrdi 2796 . . . . . 6 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3433adantr 480 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3529, 34preq12d 4766 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}})
36 eqid 2740 . . . . 5 {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
37 snex 5451 . . . . . 6 {⟨𝐽, 𝐽⟩} ∈ V
3837, 37preqsn 4886 . . . . 5 ({{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}} ↔ ({⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ∧ {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}))
3936, 36, 38mpbir2an 710 . . . 4 {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}}
4035, 39eqtrdi 2796 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}})
415, 20, 403eqtr4d 2790 . 2 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
426fvexi 6934 . . . 4 𝐵 ∈ V
4342a1i 11 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 ∈ V)
44 neqne 2954 . . . . . . 7 𝐼 = 𝐽𝐼𝐽)
4544anim2i 616 . . . . . 6 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
46 df-3an 1089 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) ↔ ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
4745, 46sylibr 234 . . . . 5 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → (𝐼𝑉𝐽𝑊𝐼𝐽))
4847ancoms 458 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (𝐼𝑉𝐽𝑊𝐼𝐽))
497, 6, 8symg2hash 19433 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
5048, 49syl 17 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (♯‘𝐵) = 2)
51 id 22 . . . . . . . 8 (𝐼𝑉𝐼𝑉)
5251ancri 549 . . . . . . 7 (𝐼𝑉 → (𝐼𝑉𝐼𝑉))
53 id 22 . . . . . . . 8 (𝐽𝑊𝐽𝑊)
5453ancri 549 . . . . . . 7 (𝐽𝑊 → (𝐽𝑊𝐽𝑊))
5552, 54anim12i 612 . . . . . 6 ((𝐼𝑉𝐽𝑊) → ((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)))
56 df-ne 2947 . . . . . . 7 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
57 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
5857ancri 549 . . . . . . 7 (𝐼𝐽 → (𝐼𝐽𝐼𝐽))
5956, 58sylbir 235 . . . . . 6 𝐼 = 𝐽 → (𝐼𝐽𝐼𝐽))
60 f1oprg 6907 . . . . . . 7 (((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) → ((𝐼𝐽𝐼𝐽) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
6160imp 406 . . . . . 6 ((((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) ∧ (𝐼𝐽𝐼𝐽)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6255, 59, 61syl2anr 596 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
63 eqidd 2741 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩})
64 id 22 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → 𝐴 = {𝐼, 𝐽})
6563, 64, 64f1oeq123d 6856 . . . . . 6 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
668, 65ax-mp 5 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6762, 66sylibr 234 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
68 prex 5452 . . . . 5 {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V
697, 6elsymgbas2 19414 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴))
7068, 69ax-mp 5 . . . 4 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
7167, 70sylibr 234 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵)
72 f1oprswap 6906 . . . . . 6 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
73 eqidd 2741 . . . . . . . 8 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
7473, 64, 64f1oeq123d 6856 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
758, 74ax-mp 5 . . . . . 6 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
7672, 75sylibr 234 . . . . 5 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
7776adantl 481 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
78 prex 5452 . . . . 5 {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V
797, 6elsymgbas2 19414 . . . . 5 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴))
8078, 79ax-mp 5 . . . 4 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
8177, 80sylibr 234 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵)
82 opex 5484 . . . . . 6 𝐼, 𝐼⟩ ∈ V
8382, 26pm3.2i 470 . . . . 5 (⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V)
84 opex 5484 . . . . . 6 𝐼, 𝐽⟩ ∈ V
85 opex 5484 . . . . . 6 𝐽, 𝐼⟩ ∈ V
8684, 85pm3.2i 470 . . . . 5 (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)
8783, 86pm3.2i 470 . . . 4 ((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V))
88 opthg2 5499 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ ↔ (𝐼 = 𝐼𝐼 = 𝐽)))
89 eqtr 2763 . . . . . . . . . . 11 ((𝐼 = 𝐼𝐼 = 𝐽) → 𝐼 = 𝐽)
9088, 89biimtrdi 253 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ → 𝐼 = 𝐽))
9190necon3d 2967 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9291com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9356, 92sylbir 235 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9493imp 406 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩)
9552adantr 480 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝑊) → (𝐼𝑉𝐼𝑉))
96 opthg 5497 . . . . . . . . . . . 12 ((𝐼𝑉𝐼𝑉) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
9795, 96syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
98 simpl 482 . . . . . . . . . . 11 ((𝐼 = 𝐽𝐼 = 𝐼) → 𝐼 = 𝐽)
9997, 98biimtrdi 253 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ → 𝐼 = 𝐽))
10099necon3d 2967 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
101100com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
10256, 101sylbir 235 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
103102imp 406 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩)
10494, 103jca 511 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
105104orcd 872 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)))
106 prneimg 4879 . . . 4 (((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)) → (((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}))
10787, 105, 106mpsyl 68 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
108 hash2prd 14524 . . . 4 ((𝐵 ∈ V ∧ (♯‘𝐵) = 2) → (({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}}))
109108imp 406 . . 3 (((𝐵 ∈ V ∧ (♯‘𝐵) = 2) ∧ ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11043, 50, 71, 81, 107, 109syl23anc 1377 . 2 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11141, 110pm2.61ian 811 1 ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  {csn 4648  {cpr 4650  cop 4654  1-1-ontowf1o 6572  cfv 6573  2c2 12348  chash 14379  Basecbs 17258  SymGrpcsymg 19410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-fac 14323  df-bc 14352  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411
This theorem is referenced by:  psgnprfval  19563  m2detleiblem1  22651  m2detleiblem5  22652  m2detleiblem6  22653  m2detleiblem3  22656  m2detleiblem4  22657  m2detleib  22658
  Copyright terms: Public domain W3C validator