MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2bas Structured version   Visualization version   GIF version

Theorem symg2bas 18168
Description: The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see theorem symg1bas 18166. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2bas ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})

Proof of Theorem symg2bas
StepHypRef Expression
1 eqid 2825 . . . . 5 (SymGrp‘{𝐽}) = (SymGrp‘{𝐽})
2 eqid 2825 . . . . 5 (Base‘(SymGrp‘{𝐽})) = (Base‘(SymGrp‘{𝐽}))
3 eqid 2825 . . . . 5 {𝐽} = {𝐽}
41, 2, 3symg1bas 18166 . . . 4 (𝐽𝑊 → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
54ad2antll 722 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
6 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
7 symg1bas.1 . . . . . 6 𝐺 = (SymGrp‘𝐴)
8 symg2bas.0 . . . . . . . 8 𝐴 = {𝐼, 𝐽}
9 df-pr 4400 . . . . . . . . 9 {𝐼, 𝐽} = ({𝐼} ∪ {𝐽})
10 sneq 4407 . . . . . . . . . . . 12 (𝐼 = 𝐽 → {𝐼} = {𝐽})
1110uneq1d 3993 . . . . . . . . . . 11 (𝐼 = 𝐽 → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
1211adantr 474 . . . . . . . . . 10 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
13 unidm 3983 . . . . . . . . . 10 ({𝐽} ∪ {𝐽}) = {𝐽}
1412, 13syl6eq 2877 . . . . . . . . 9 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = {𝐽})
159, 14syl5eq 2873 . . . . . . . 8 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {𝐼, 𝐽} = {𝐽})
168, 15syl5eq 2873 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐴 = {𝐽})
1716fveq2d 6437 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (SymGrp‘𝐴) = (SymGrp‘{𝐽}))
187, 17syl5eq 2873 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐺 = (SymGrp‘{𝐽}))
1918fveq2d 6437 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘𝐺) = (Base‘(SymGrp‘{𝐽})))
206, 19syl5eq 2873 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = (Base‘(SymGrp‘{𝐽})))
21 id 22 . . . . . . . . 9 (𝐼 = 𝐽𝐼 = 𝐽)
2221, 21opeq12d 4631 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2322adantr 474 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2423preq1d 4492 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
25 eqid 2825 . . . . . . 7 𝐽, 𝐽⟩ = ⟨𝐽, 𝐽
26 opex 5153 . . . . . . . 8 𝐽, 𝐽⟩ ∈ V
2726, 26preqsn 4611 . . . . . . 7 ({⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ↔ (⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩))
2825, 25, 27mpbir2an 704 . . . . . 6 {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
2924, 28syl6eq 2877 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩})
30 opeq1 4623 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐽⟩ = ⟨𝐽, 𝐽⟩)
31 opeq2 4624 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐽, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
3230, 31preq12d 4494 . . . . . . 7 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
3332, 28syl6eq 2877 . . . . . 6 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3433adantr 474 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3529, 34preq12d 4494 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}})
36 eqid 2825 . . . . 5 {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
37 snex 5129 . . . . . 6 {⟨𝐽, 𝐽⟩} ∈ V
3837, 37preqsn 4611 . . . . 5 ({{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}} ↔ ({⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ∧ {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}))
3936, 36, 38mpbir2an 704 . . . 4 {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}}
4035, 39syl6eq 2877 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}})
415, 20, 403eqtr4d 2871 . 2 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
426fvexi 6447 . . . 4 𝐵 ∈ V
4342a1i 11 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 ∈ V)
44 neqne 3007 . . . . . . 7 𝐼 = 𝐽𝐼𝐽)
4544anim2i 612 . . . . . 6 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
46 df-3an 1115 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) ↔ ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
4745, 46sylibr 226 . . . . 5 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → (𝐼𝑉𝐽𝑊𝐼𝐽))
4847ancoms 452 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (𝐼𝑉𝐽𝑊𝐼𝐽))
497, 6, 8symg2hash 18167 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
5048, 49syl 17 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (♯‘𝐵) = 2)
51 id 22 . . . . . . . 8 (𝐼𝑉𝐼𝑉)
5251ancri 547 . . . . . . 7 (𝐼𝑉 → (𝐼𝑉𝐼𝑉))
53 id 22 . . . . . . . 8 (𝐽𝑊𝐽𝑊)
5453ancri 547 . . . . . . 7 (𝐽𝑊 → (𝐽𝑊𝐽𝑊))
5552, 54anim12i 608 . . . . . 6 ((𝐼𝑉𝐽𝑊) → ((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)))
56 df-ne 3000 . . . . . . 7 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
57 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
5857ancri 547 . . . . . . 7 (𝐼𝐽 → (𝐼𝐽𝐼𝐽))
5956, 58sylbir 227 . . . . . 6 𝐼 = 𝐽 → (𝐼𝐽𝐼𝐽))
60 f1oprg 6422 . . . . . . 7 (((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) → ((𝐼𝐽𝐼𝐽) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
6160imp 397 . . . . . 6 ((((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) ∧ (𝐼𝐽𝐼𝐽)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6255, 59, 61syl2anr 592 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
63 eqidd 2826 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩})
64 id 22 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → 𝐴 = {𝐼, 𝐽})
6563, 64, 64f1oeq123d 6373 . . . . . 6 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
668, 65ax-mp 5 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6762, 66sylibr 226 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
68 prex 5130 . . . . 5 {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V
697, 6elsymgbas2 18151 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴))
7068, 69ax-mp 5 . . . 4 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
7167, 70sylibr 226 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵)
72 f1oprswap 6421 . . . . . 6 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
73 eqidd 2826 . . . . . . . 8 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
7473, 64, 64f1oeq123d 6373 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
758, 74ax-mp 5 . . . . . 6 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
7672, 75sylibr 226 . . . . 5 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
7776adantl 475 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
78 prex 5130 . . . . 5 {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V
797, 6elsymgbas2 18151 . . . . 5 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴))
8078, 79ax-mp 5 . . . 4 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
8177, 80sylibr 226 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵)
82 opex 5153 . . . . . 6 𝐼, 𝐼⟩ ∈ V
8382, 26pm3.2i 464 . . . . 5 (⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V)
84 opex 5153 . . . . . 6 𝐼, 𝐽⟩ ∈ V
85 opex 5153 . . . . . 6 𝐽, 𝐼⟩ ∈ V
8684, 85pm3.2i 464 . . . . 5 (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)
8783, 86pm3.2i 464 . . . 4 ((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V))
88 opthg2 5168 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ ↔ (𝐼 = 𝐼𝐼 = 𝐽)))
89 eqtr 2846 . . . . . . . . . . 11 ((𝐼 = 𝐼𝐼 = 𝐽) → 𝐼 = 𝐽)
9088, 89syl6bi 245 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ → 𝐼 = 𝐽))
9190necon3d 3020 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9291com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9356, 92sylbir 227 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9493imp 397 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩)
9552adantr 474 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝑊) → (𝐼𝑉𝐼𝑉))
96 opthg 5166 . . . . . . . . . . . 12 ((𝐼𝑉𝐼𝑉) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
9795, 96syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
98 simpl 476 . . . . . . . . . . 11 ((𝐼 = 𝐽𝐼 = 𝐼) → 𝐼 = 𝐽)
9997, 98syl6bi 245 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ → 𝐼 = 𝐽))
10099necon3d 3020 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
101100com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
10256, 101sylbir 227 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
103102imp 397 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩)
10494, 103jca 509 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
105104orcd 906 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)))
106 prneimg 4603 . . . 4 (((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)) → (((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}))
10787, 105, 106mpsyl 68 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
108 hash2prd 13546 . . . 4 ((𝐵 ∈ V ∧ (♯‘𝐵) = 2) → (({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}}))
109108imp 397 . . 3 (((𝐵 ∈ V ∧ (♯‘𝐵) = 2) ∧ ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11043, 50, 71, 81, 107, 109syl23anc 1502 . 2 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11141, 110pm2.61ian 848 1 ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166  wne 2999  Vcvv 3414  cun 3796  {csn 4397  {cpr 4399  cop 4403  1-1-ontowf1o 6122  cfv 6123  2c2 11406  chash 13410  Basecbs 16222  SymGrpcsymg 18147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-seq 13096  df-fac 13354  df-bc 13383  df-hash 13411  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-tset 16324  df-symg 18148
This theorem is referenced by:  psgnprfval  18292  m2detleiblem1  20798  m2detleiblem5  20799  m2detleiblem6  20800  m2detleiblem3  20803  m2detleiblem4  20804  m2detleib  20805
  Copyright terms: Public domain W3C validator