MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2bas Structured version   Visualization version   GIF version

Theorem symg2bas 19307
Description: The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 19305. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2bas ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})

Proof of Theorem symg2bas
StepHypRef Expression
1 eqid 2733 . . . . 5 (SymGrp‘{𝐽}) = (SymGrp‘{𝐽})
2 eqid 2733 . . . . 5 (Base‘(SymGrp‘{𝐽})) = (Base‘(SymGrp‘{𝐽}))
3 eqid 2733 . . . . 5 {𝐽} = {𝐽}
41, 2, 3symg1bas 19305 . . . 4 (𝐽𝑊 → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
54ad2antll 729 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
6 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
7 symg1bas.1 . . . . . 6 𝐺 = (SymGrp‘𝐴)
8 symg2bas.0 . . . . . . . 8 𝐴 = {𝐼, 𝐽}
9 df-pr 4578 . . . . . . . . 9 {𝐼, 𝐽} = ({𝐼} ∪ {𝐽})
10 sneq 4585 . . . . . . . . . . . 12 (𝐼 = 𝐽 → {𝐼} = {𝐽})
1110uneq1d 4116 . . . . . . . . . . 11 (𝐼 = 𝐽 → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
1211adantr 480 . . . . . . . . . 10 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
13 unidm 4106 . . . . . . . . . 10 ({𝐽} ∪ {𝐽}) = {𝐽}
1412, 13eqtrdi 2784 . . . . . . . . 9 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = {𝐽})
159, 14eqtrid 2780 . . . . . . . 8 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {𝐼, 𝐽} = {𝐽})
168, 15eqtrid 2780 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐴 = {𝐽})
1716fveq2d 6832 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (SymGrp‘𝐴) = (SymGrp‘{𝐽}))
187, 17eqtrid 2780 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐺 = (SymGrp‘{𝐽}))
1918fveq2d 6832 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘𝐺) = (Base‘(SymGrp‘{𝐽})))
206, 19eqtrid 2780 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = (Base‘(SymGrp‘{𝐽})))
21 id 22 . . . . . . . . 9 (𝐼 = 𝐽𝐼 = 𝐽)
2221, 21opeq12d 4832 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2322adantr 480 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2423preq1d 4691 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
25 eqid 2733 . . . . . . 7 𝐽, 𝐽⟩ = ⟨𝐽, 𝐽
26 opex 5407 . . . . . . . 8 𝐽, 𝐽⟩ ∈ V
2726, 26preqsn 4813 . . . . . . 7 ({⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ↔ (⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩))
2825, 25, 27mpbir2an 711 . . . . . 6 {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
2924, 28eqtrdi 2784 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩})
30 opeq1 4824 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐽⟩ = ⟨𝐽, 𝐽⟩)
31 opeq2 4825 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐽, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
3230, 31preq12d 4693 . . . . . . 7 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
3332, 28eqtrdi 2784 . . . . . 6 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3433adantr 480 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3529, 34preq12d 4693 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}})
36 eqid 2733 . . . . 5 {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
37 snex 5376 . . . . . 6 {⟨𝐽, 𝐽⟩} ∈ V
3837, 37preqsn 4813 . . . . 5 ({{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}} ↔ ({⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ∧ {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}))
3936, 36, 38mpbir2an 711 . . . 4 {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}}
4035, 39eqtrdi 2784 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}})
415, 20, 403eqtr4d 2778 . 2 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
426fvexi 6842 . . . 4 𝐵 ∈ V
4342a1i 11 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 ∈ V)
44 neqne 2937 . . . . . . 7 𝐼 = 𝐽𝐼𝐽)
4544anim2i 617 . . . . . 6 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
46 df-3an 1088 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) ↔ ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
4745, 46sylibr 234 . . . . 5 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → (𝐼𝑉𝐽𝑊𝐼𝐽))
4847ancoms 458 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (𝐼𝑉𝐽𝑊𝐼𝐽))
497, 6, 8symg2hash 19306 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
5048, 49syl 17 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (♯‘𝐵) = 2)
51 id 22 . . . . . . . 8 (𝐼𝑉𝐼𝑉)
5251ancri 549 . . . . . . 7 (𝐼𝑉 → (𝐼𝑉𝐼𝑉))
53 id 22 . . . . . . . 8 (𝐽𝑊𝐽𝑊)
5453ancri 549 . . . . . . 7 (𝐽𝑊 → (𝐽𝑊𝐽𝑊))
5552, 54anim12i 613 . . . . . 6 ((𝐼𝑉𝐽𝑊) → ((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)))
56 df-ne 2930 . . . . . . 7 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
57 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
5857ancri 549 . . . . . . 7 (𝐼𝐽 → (𝐼𝐽𝐼𝐽))
5956, 58sylbir 235 . . . . . 6 𝐼 = 𝐽 → (𝐼𝐽𝐼𝐽))
60 f1oprg 6814 . . . . . . 7 (((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) → ((𝐼𝐽𝐼𝐽) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
6160imp 406 . . . . . 6 ((((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) ∧ (𝐼𝐽𝐼𝐽)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6255, 59, 61syl2anr 597 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
63 eqidd 2734 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩})
64 id 22 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → 𝐴 = {𝐼, 𝐽})
6563, 64, 64f1oeq123d 6762 . . . . . 6 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
668, 65ax-mp 5 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6762, 66sylibr 234 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
68 prex 5377 . . . . 5 {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V
697, 6elsymgbas2 19287 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴))
7068, 69ax-mp 5 . . . 4 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
7167, 70sylibr 234 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵)
72 f1oprswap 6813 . . . . . 6 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
73 eqidd 2734 . . . . . . . 8 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
7473, 64, 64f1oeq123d 6762 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
758, 74ax-mp 5 . . . . . 6 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
7672, 75sylibr 234 . . . . 5 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
7776adantl 481 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
78 prex 5377 . . . . 5 {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V
797, 6elsymgbas2 19287 . . . . 5 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴))
8078, 79ax-mp 5 . . . 4 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
8177, 80sylibr 234 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵)
82 opex 5407 . . . . . 6 𝐼, 𝐼⟩ ∈ V
8382, 26pm3.2i 470 . . . . 5 (⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V)
84 opex 5407 . . . . . 6 𝐼, 𝐽⟩ ∈ V
85 opex 5407 . . . . . 6 𝐽, 𝐼⟩ ∈ V
8684, 85pm3.2i 470 . . . . 5 (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)
8783, 86pm3.2i 470 . . . 4 ((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V))
88 opthg2 5422 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ ↔ (𝐼 = 𝐼𝐼 = 𝐽)))
89 eqtr 2753 . . . . . . . . . . 11 ((𝐼 = 𝐼𝐼 = 𝐽) → 𝐼 = 𝐽)
9088, 89biimtrdi 253 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ → 𝐼 = 𝐽))
9190necon3d 2950 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9291com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9356, 92sylbir 235 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9493imp 406 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩)
9552adantr 480 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝑊) → (𝐼𝑉𝐼𝑉))
96 opthg 5420 . . . . . . . . . . . 12 ((𝐼𝑉𝐼𝑉) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
9795, 96syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
98 simpl 482 . . . . . . . . . . 11 ((𝐼 = 𝐽𝐼 = 𝐼) → 𝐼 = 𝐽)
9997, 98biimtrdi 253 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ → 𝐼 = 𝐽))
10099necon3d 2950 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
101100com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
10256, 101sylbir 235 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
103102imp 406 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩)
10494, 103jca 511 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
105104orcd 873 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)))
106 prneimg 4805 . . . 4 (((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)) → (((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}))
10787, 105, 106mpsyl 68 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
108 hash2prd 14384 . . . 4 ((𝐵 ∈ V ∧ (♯‘𝐵) = 2) → (({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}}))
109108imp 406 . . 3 (((𝐵 ∈ V ∧ (♯‘𝐵) = 2) ∧ ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11043, 50, 71, 81, 107, 109syl23anc 1379 . 2 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11141, 110pm2.61ian 811 1 ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cun 3896  {csn 4575  {cpr 4577  cop 4581  1-1-ontowf1o 6485  cfv 6486  2c2 12187  chash 14239  Basecbs 17122  SymGrpcsymg 19283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911  df-fac 14183  df-bc 14212  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-tset 17182  df-efmnd 18779  df-symg 19284
This theorem is referenced by:  psgnprfval  19435  m2detleiblem1  22540  m2detleiblem5  22541  m2detleiblem6  22542  m2detleiblem3  22545  m2detleiblem4  22546  m2detleib  22547
  Copyright terms: Public domain W3C validator