MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prde Structured version   Visualization version   GIF version

Theorem hash2prde 14369
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2prde ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prde
StepHypRef Expression
1 hash2pr 14368 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
2 equid 2015 . . . . . . 7 𝑏 = 𝑏
3 vex 3449 . . . . . . . . 9 𝑎 ∈ V
4 vex 3449 . . . . . . . . 9 𝑏 ∈ V
53, 4preqsn 4819 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏𝑏 = 𝑏))
6 eqeq2 2748 . . . . . . . . . 10 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏}))
7 fveq2 6842 . . . . . . . . . . . 12 (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏}))
8 hashsng 14269 . . . . . . . . . . . . 13 (𝑏 ∈ V → (♯‘{𝑏}) = 1)
98elv 3451 . . . . . . . . . . . 12 (♯‘{𝑏}) = 1
107, 9eqtrdi 2792 . . . . . . . . . . 11 (𝑉 = {𝑏} → (♯‘𝑉) = 1)
11 eqeq1 2740 . . . . . . . . . . . . 13 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1))
12 1ne2 12361 . . . . . . . . . . . . . . 15 1 ≠ 2
13 df-ne 2944 . . . . . . . . . . . . . . . 16 (1 ≠ 2 ↔ ¬ 1 = 2)
14 pm2.21 123 . . . . . . . . . . . . . . . 16 (¬ 1 = 2 → (1 = 2 → 𝑎𝑏))
1513, 14sylbi 216 . . . . . . . . . . . . . . 15 (1 ≠ 2 → (1 = 2 → 𝑎𝑏))
1612, 15ax-mp 5 . . . . . . . . . . . . . 14 (1 = 2 → 𝑎𝑏)
1716eqcoms 2744 . . . . . . . . . . . . 13 (2 = 1 → 𝑎𝑏)
1811, 17syl6bi 252 . . . . . . . . . . . 12 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎𝑏))
1918adantl 482 . . . . . . . . . . 11 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎𝑏))
2010, 19syl5com 31 . . . . . . . . . 10 (𝑉 = {𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏))
216, 20syl6bi 252 . . . . . . . . 9 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏)))
2221impcomd 412 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
235, 22sylbir 234 . . . . . . 7 ((𝑎 = 𝑏𝑏 = 𝑏) → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
242, 23mpan2 689 . . . . . 6 (𝑎 = 𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
25 ax-1 6 . . . . . 6 (𝑎𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
2624, 25pm2.61ine 3028 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏)
27 simpr 485 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏})
2826, 27jca 512 . . . 4 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎𝑏𝑉 = {𝑎, 𝑏}))
2928ex 413 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎𝑏𝑉 = {𝑎, 𝑏})))
30292eximdv 1922 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
311, 30mpd 15 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  Vcvv 3445  {csn 4586  {cpr 4588  cfv 6496  1c1 11052  2c2 12208  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231
This theorem is referenced by:  hash2exprb  14370  umgredg  28089  frgrregord013  29339
  Copyright terms: Public domain W3C validator