Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash2prde | Structured version Visualization version GIF version |
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
Ref | Expression |
---|---|
hash2prde | ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash2pr 14183 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏}) | |
2 | equid 2015 | . . . . . . 7 ⊢ 𝑏 = 𝑏 | |
3 | vex 3436 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
4 | vex 3436 | . . . . . . . . 9 ⊢ 𝑏 ∈ V | |
5 | 3, 4 | preqsn 4792 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏 ∧ 𝑏 = 𝑏)) |
6 | eqeq2 2750 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏})) | |
7 | fveq2 6774 | . . . . . . . . . . . 12 ⊢ (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏})) | |
8 | hashsng 14084 | . . . . . . . . . . . . 13 ⊢ (𝑏 ∈ V → (♯‘{𝑏}) = 1) | |
9 | 8 | elv 3438 | . . . . . . . . . . . 12 ⊢ (♯‘{𝑏}) = 1 |
10 | 7, 9 | eqtrdi 2794 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑏} → (♯‘𝑉) = 1) |
11 | eqeq1 2742 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1)) | |
12 | 1ne2 12181 | . . . . . . . . . . . . . . 15 ⊢ 1 ≠ 2 | |
13 | df-ne 2944 | . . . . . . . . . . . . . . . 16 ⊢ (1 ≠ 2 ↔ ¬ 1 = 2) | |
14 | pm2.21 123 | . . . . . . . . . . . . . . . 16 ⊢ (¬ 1 = 2 → (1 = 2 → 𝑎 ≠ 𝑏)) | |
15 | 13, 14 | sylbi 216 | . . . . . . . . . . . . . . 15 ⊢ (1 ≠ 2 → (1 = 2 → 𝑎 ≠ 𝑏)) |
16 | 12, 15 | ax-mp 5 | . . . . . . . . . . . . . 14 ⊢ (1 = 2 → 𝑎 ≠ 𝑏) |
17 | 16 | eqcoms 2746 | . . . . . . . . . . . . 13 ⊢ (2 = 1 → 𝑎 ≠ 𝑏) |
18 | 11, 17 | syl6bi 252 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎 ≠ 𝑏)) |
19 | 18 | adantl 482 | . . . . . . . . . . 11 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎 ≠ 𝑏)) |
20 | 10, 19 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑏} → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → 𝑎 ≠ 𝑏)) |
21 | 6, 20 | syl6bi 252 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → 𝑎 ≠ 𝑏))) |
22 | 21 | impcomd 412 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} = {𝑏} → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) |
23 | 5, 22 | sylbir 234 | . . . . . . 7 ⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝑏) → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) |
24 | 2, 23 | mpan2 688 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) |
25 | ax-1 6 | . . . . . 6 ⊢ (𝑎 ≠ 𝑏 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) | |
26 | 24, 25 | pm2.61ine 3028 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏) |
27 | simpr 485 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏}) | |
28 | 26, 27 | jca 512 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
29 | 28 | ex 413 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
30 | 29 | 2eximdv 1922 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
31 | 1, 30 | mpd 15 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 {csn 4561 {cpr 4563 ‘cfv 6433 1c1 10872 2c2 12028 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: hash2exprb 14185 umgredg 27508 frgrregord013 28759 |
Copyright terms: Public domain | W3C validator |