![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash2prde | Structured version Visualization version GIF version |
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
Ref | Expression |
---|---|
hash2prde | ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash2pr 14426 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏}) | |
2 | equid 2007 | . . . . . . 7 ⊢ 𝑏 = 𝑏 | |
3 | vex 3470 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
4 | vex 3470 | . . . . . . . . 9 ⊢ 𝑏 ∈ V | |
5 | 3, 4 | preqsn 4854 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏 ∧ 𝑏 = 𝑏)) |
6 | eqeq2 2736 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏})) | |
7 | fveq2 6881 | . . . . . . . . . . . 12 ⊢ (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏})) | |
8 | hashsng 14325 | . . . . . . . . . . . . 13 ⊢ (𝑏 ∈ V → (♯‘{𝑏}) = 1) | |
9 | 8 | elv 3472 | . . . . . . . . . . . 12 ⊢ (♯‘{𝑏}) = 1 |
10 | 7, 9 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑏} → (♯‘𝑉) = 1) |
11 | eqeq1 2728 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1)) | |
12 | 1ne2 12416 | . . . . . . . . . . . . . . 15 ⊢ 1 ≠ 2 | |
13 | df-ne 2933 | . . . . . . . . . . . . . . . 16 ⊢ (1 ≠ 2 ↔ ¬ 1 = 2) | |
14 | pm2.21 123 | . . . . . . . . . . . . . . . 16 ⊢ (¬ 1 = 2 → (1 = 2 → 𝑎 ≠ 𝑏)) | |
15 | 13, 14 | sylbi 216 | . . . . . . . . . . . . . . 15 ⊢ (1 ≠ 2 → (1 = 2 → 𝑎 ≠ 𝑏)) |
16 | 12, 15 | ax-mp 5 | . . . . . . . . . . . . . 14 ⊢ (1 = 2 → 𝑎 ≠ 𝑏) |
17 | 16 | eqcoms 2732 | . . . . . . . . . . . . 13 ⊢ (2 = 1 → 𝑎 ≠ 𝑏) |
18 | 11, 17 | syl6bi 253 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎 ≠ 𝑏)) |
19 | 18 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎 ≠ 𝑏)) |
20 | 10, 19 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑏} → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → 𝑎 ≠ 𝑏)) |
21 | 6, 20 | syl6bi 253 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → 𝑎 ≠ 𝑏))) |
22 | 21 | impcomd 411 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} = {𝑏} → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) |
23 | 5, 22 | sylbir 234 | . . . . . . 7 ⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝑏) → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) |
24 | 2, 23 | mpan2 688 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) |
25 | ax-1 6 | . . . . . 6 ⊢ (𝑎 ≠ 𝑏 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏)) | |
26 | 24, 25 | pm2.61ine 3017 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏) |
27 | simpr 484 | . . . . 5 ⊢ (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏}) | |
28 | 26, 27 | jca 511 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
29 | 28 | ex 412 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
30 | 29 | 2eximdv 1914 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
31 | 1, 30 | mpd 15 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 {csn 4620 {cpr 4622 ‘cfv 6533 1c1 11106 2c2 12263 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-dju 9891 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 |
This theorem is referenced by: hash2exprb 14428 umgredg 28833 frgrregord013 30083 |
Copyright terms: Public domain | W3C validator |