MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prde Structured version   Visualization version   GIF version

Theorem hash2prde 14184
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2prde ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prde
StepHypRef Expression
1 hash2pr 14183 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
2 equid 2015 . . . . . . 7 𝑏 = 𝑏
3 vex 3436 . . . . . . . . 9 𝑎 ∈ V
4 vex 3436 . . . . . . . . 9 𝑏 ∈ V
53, 4preqsn 4792 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏𝑏 = 𝑏))
6 eqeq2 2750 . . . . . . . . . 10 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏}))
7 fveq2 6774 . . . . . . . . . . . 12 (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏}))
8 hashsng 14084 . . . . . . . . . . . . 13 (𝑏 ∈ V → (♯‘{𝑏}) = 1)
98elv 3438 . . . . . . . . . . . 12 (♯‘{𝑏}) = 1
107, 9eqtrdi 2794 . . . . . . . . . . 11 (𝑉 = {𝑏} → (♯‘𝑉) = 1)
11 eqeq1 2742 . . . . . . . . . . . . 13 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1))
12 1ne2 12181 . . . . . . . . . . . . . . 15 1 ≠ 2
13 df-ne 2944 . . . . . . . . . . . . . . . 16 (1 ≠ 2 ↔ ¬ 1 = 2)
14 pm2.21 123 . . . . . . . . . . . . . . . 16 (¬ 1 = 2 → (1 = 2 → 𝑎𝑏))
1513, 14sylbi 216 . . . . . . . . . . . . . . 15 (1 ≠ 2 → (1 = 2 → 𝑎𝑏))
1612, 15ax-mp 5 . . . . . . . . . . . . . 14 (1 = 2 → 𝑎𝑏)
1716eqcoms 2746 . . . . . . . . . . . . 13 (2 = 1 → 𝑎𝑏)
1811, 17syl6bi 252 . . . . . . . . . . . 12 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎𝑏))
1918adantl 482 . . . . . . . . . . 11 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎𝑏))
2010, 19syl5com 31 . . . . . . . . . 10 (𝑉 = {𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏))
216, 20syl6bi 252 . . . . . . . . 9 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏)))
2221impcomd 412 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
235, 22sylbir 234 . . . . . . 7 ((𝑎 = 𝑏𝑏 = 𝑏) → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
242, 23mpan2 688 . . . . . 6 (𝑎 = 𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
25 ax-1 6 . . . . . 6 (𝑎𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
2624, 25pm2.61ine 3028 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏)
27 simpr 485 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏})
2826, 27jca 512 . . . 4 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎𝑏𝑉 = {𝑎, 𝑏}))
2928ex 413 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎𝑏𝑉 = {𝑎, 𝑏})))
30292eximdv 1922 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
311, 30mpd 15 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  {csn 4561  {cpr 4563  cfv 6433  1c1 10872  2c2 12028  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  hash2exprb  14185  umgredg  27508  frgrregord013  28759
  Copyright terms: Public domain W3C validator