Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prde Structured version   Visualization version   GIF version

Theorem hash2prde 13828
 Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2prde ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prde
StepHypRef Expression
1 hash2pr 13827 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
2 equid 2019 . . . . . . 7 𝑏 = 𝑏
3 vex 3447 . . . . . . . . 9 𝑎 ∈ V
4 vex 3447 . . . . . . . . 9 𝑏 ∈ V
53, 4preqsn 4755 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏𝑏 = 𝑏))
6 eqeq2 2813 . . . . . . . . . 10 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏}))
7 fveq2 6649 . . . . . . . . . . . 12 (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏}))
8 hashsng 13730 . . . . . . . . . . . . 13 (𝑏 ∈ V → (♯‘{𝑏}) = 1)
98elv 3449 . . . . . . . . . . . 12 (♯‘{𝑏}) = 1
107, 9eqtrdi 2852 . . . . . . . . . . 11 (𝑉 = {𝑏} → (♯‘𝑉) = 1)
11 eqeq1 2805 . . . . . . . . . . . . 13 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1))
12 1ne2 11837 . . . . . . . . . . . . . . 15 1 ≠ 2
13 df-ne 2991 . . . . . . . . . . . . . . . 16 (1 ≠ 2 ↔ ¬ 1 = 2)
14 pm2.21 123 . . . . . . . . . . . . . . . 16 (¬ 1 = 2 → (1 = 2 → 𝑎𝑏))
1513, 14sylbi 220 . . . . . . . . . . . . . . 15 (1 ≠ 2 → (1 = 2 → 𝑎𝑏))
1612, 15ax-mp 5 . . . . . . . . . . . . . 14 (1 = 2 → 𝑎𝑏)
1716eqcoms 2809 . . . . . . . . . . . . 13 (2 = 1 → 𝑎𝑏)
1811, 17syl6bi 256 . . . . . . . . . . . 12 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎𝑏))
1918adantl 485 . . . . . . . . . . 11 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎𝑏))
2010, 19syl5com 31 . . . . . . . . . 10 (𝑉 = {𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏))
216, 20syl6bi 256 . . . . . . . . 9 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏)))
2221impcomd 415 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
235, 22sylbir 238 . . . . . . 7 ((𝑎 = 𝑏𝑏 = 𝑏) → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
242, 23mpan2 690 . . . . . 6 (𝑎 = 𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
25 ax-1 6 . . . . . 6 (𝑎𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
2624, 25pm2.61ine 3073 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏)
27 simpr 488 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏})
2826, 27jca 515 . . . 4 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎𝑏𝑉 = {𝑎, 𝑏}))
2928ex 416 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎𝑏𝑉 = {𝑎, 𝑏})))
30292eximdv 1920 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
311, 30mpd 15 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  Vcvv 3444  {csn 4528  {cpr 4530  ‘cfv 6328  1c1 10531  2c2 11684  ♯chash 13690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-hash 13691 This theorem is referenced by:  hash2exprb  13829  umgredg  26935  frgrregord013  28184
 Copyright terms: Public domain W3C validator