MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prde Structured version   Visualization version   GIF version

Theorem hash2prde 14427
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2prde ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prde
StepHypRef Expression
1 hash2pr 14426 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
2 equid 2007 . . . . . . 7 𝑏 = 𝑏
3 vex 3470 . . . . . . . . 9 𝑎 ∈ V
4 vex 3470 . . . . . . . . 9 𝑏 ∈ V
53, 4preqsn 4854 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏𝑏 = 𝑏))
6 eqeq2 2736 . . . . . . . . . 10 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏}))
7 fveq2 6881 . . . . . . . . . . . 12 (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏}))
8 hashsng 14325 . . . . . . . . . . . . 13 (𝑏 ∈ V → (♯‘{𝑏}) = 1)
98elv 3472 . . . . . . . . . . . 12 (♯‘{𝑏}) = 1
107, 9eqtrdi 2780 . . . . . . . . . . 11 (𝑉 = {𝑏} → (♯‘𝑉) = 1)
11 eqeq1 2728 . . . . . . . . . . . . 13 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1))
12 1ne2 12416 . . . . . . . . . . . . . . 15 1 ≠ 2
13 df-ne 2933 . . . . . . . . . . . . . . . 16 (1 ≠ 2 ↔ ¬ 1 = 2)
14 pm2.21 123 . . . . . . . . . . . . . . . 16 (¬ 1 = 2 → (1 = 2 → 𝑎𝑏))
1513, 14sylbi 216 . . . . . . . . . . . . . . 15 (1 ≠ 2 → (1 = 2 → 𝑎𝑏))
1612, 15ax-mp 5 . . . . . . . . . . . . . 14 (1 = 2 → 𝑎𝑏)
1716eqcoms 2732 . . . . . . . . . . . . 13 (2 = 1 → 𝑎𝑏)
1811, 17syl6bi 253 . . . . . . . . . . . 12 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎𝑏))
1918adantl 481 . . . . . . . . . . 11 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎𝑏))
2010, 19syl5com 31 . . . . . . . . . 10 (𝑉 = {𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏))
216, 20syl6bi 253 . . . . . . . . 9 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏)))
2221impcomd 411 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
235, 22sylbir 234 . . . . . . 7 ((𝑎 = 𝑏𝑏 = 𝑏) → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
242, 23mpan2 688 . . . . . 6 (𝑎 = 𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
25 ax-1 6 . . . . . 6 (𝑎𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
2624, 25pm2.61ine 3017 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏)
27 simpr 484 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏})
2826, 27jca 511 . . . 4 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎𝑏𝑉 = {𝑎, 𝑏}))
2928ex 412 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎𝑏𝑉 = {𝑎, 𝑏})))
30292eximdv 1914 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
311, 30mpd 15 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2932  Vcvv 3466  {csn 4620  {cpr 4622  cfv 6533  1c1 11106  2c2 12263  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  hash2exprb  14428  umgredg  28833  frgrregord013  30083
  Copyright terms: Public domain W3C validator