MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prde Structured version   Visualization version   GIF version

Theorem hash2prde 14435
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2prde ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prde
StepHypRef Expression
1 hash2pr 14434 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
2 equid 2012 . . . . . . 7 𝑏 = 𝑏
3 vex 3451 . . . . . . . . 9 𝑎 ∈ V
4 vex 3451 . . . . . . . . 9 𝑏 ∈ V
53, 4preqsn 4826 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} ↔ (𝑎 = 𝑏𝑏 = 𝑏))
6 eqeq2 2741 . . . . . . . . . 10 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} ↔ 𝑉 = {𝑏}))
7 fveq2 6858 . . . . . . . . . . . 12 (𝑉 = {𝑏} → (♯‘𝑉) = (♯‘{𝑏}))
8 hashsng 14334 . . . . . . . . . . . . 13 (𝑏 ∈ V → (♯‘{𝑏}) = 1)
98elv 3452 . . . . . . . . . . . 12 (♯‘{𝑏}) = 1
107, 9eqtrdi 2780 . . . . . . . . . . 11 (𝑉 = {𝑏} → (♯‘𝑉) = 1)
11 eqeq1 2733 . . . . . . . . . . . . 13 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 ↔ 2 = 1))
12 1ne2 12389 . . . . . . . . . . . . . . 15 1 ≠ 2
13 df-ne 2926 . . . . . . . . . . . . . . . 16 (1 ≠ 2 ↔ ¬ 1 = 2)
14 pm2.21 123 . . . . . . . . . . . . . . . 16 (¬ 1 = 2 → (1 = 2 → 𝑎𝑏))
1513, 14sylbi 217 . . . . . . . . . . . . . . 15 (1 ≠ 2 → (1 = 2 → 𝑎𝑏))
1612, 15ax-mp 5 . . . . . . . . . . . . . 14 (1 = 2 → 𝑎𝑏)
1716eqcoms 2737 . . . . . . . . . . . . 13 (2 = 1 → 𝑎𝑏)
1811, 17biimtrdi 253 . . . . . . . . . . . 12 ((♯‘𝑉) = 2 → ((♯‘𝑉) = 1 → 𝑎𝑏))
1918adantl 481 . . . . . . . . . . 11 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ((♯‘𝑉) = 1 → 𝑎𝑏))
2010, 19syl5com 31 . . . . . . . . . 10 (𝑉 = {𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏))
216, 20biimtrdi 253 . . . . . . . . 9 ({𝑎, 𝑏} = {𝑏} → (𝑉 = {𝑎, 𝑏} → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑎𝑏)))
2221impcomd 411 . . . . . . . 8 ({𝑎, 𝑏} = {𝑏} → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
235, 22sylbir 235 . . . . . . 7 ((𝑎 = 𝑏𝑏 = 𝑏) → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
242, 23mpan2 691 . . . . . 6 (𝑎 = 𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
25 ax-1 6 . . . . . 6 (𝑎𝑏 → (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏))
2624, 25pm2.61ine 3008 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎𝑏)
27 simpr 484 . . . . 5 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → 𝑉 = {𝑎, 𝑏})
2826, 27jca 511 . . . 4 (((𝑉𝑊 ∧ (♯‘𝑉) = 2) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎𝑏𝑉 = {𝑎, 𝑏}))
2928ex 412 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (𝑉 = {𝑎, 𝑏} → (𝑎𝑏𝑉 = {𝑎, 𝑏})))
30292eximdv 1919 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
311, 30mpd 15 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3447  {csn 4589  {cpr 4591  cfv 6511  1c1 11069  2c2 12241  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  hash2exprb  14436  umgredg  29065  frgrregord013  30324
  Copyright terms: Public domain W3C validator