Proof of Theorem opeqsng
| Step | Hyp | Ref
| Expression |
| 1 | | dfopg 4851 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 2 | 1 | eqeq1d 2736 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = {𝐶} ↔ {{𝐴}, {𝐴, 𝐵}} = {𝐶})) |
| 3 | | snex 5416 |
. . . 4
⊢ {𝐴} ∈ V |
| 4 | | prex 5417 |
. . . 4
⊢ {𝐴, 𝐵} ∈ V |
| 5 | 3, 4 | preqsn 4842 |
. . 3
⊢ ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶)) |
| 6 | 5 | a1i 11 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶))) |
| 7 | | eqcom 2741 |
. . . . 5
⊢ ({𝐴} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐴}) |
| 8 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) |
| 9 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) |
| 10 | 8, 9 | preqsnd 4839 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} = {𝐴} ↔ (𝐴 = 𝐴 ∧ 𝐵 = 𝐴))) |
| 11 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 = 𝐴 ∧ 𝐵 = 𝐴) → 𝐵 = 𝐴) |
| 12 | | eqid 2734 |
. . . . . . . . 9
⊢ 𝐴 = 𝐴 |
| 13 | 12 | jctl 523 |
. . . . . . . 8
⊢ (𝐵 = 𝐴 → (𝐴 = 𝐴 ∧ 𝐵 = 𝐴)) |
| 14 | 11, 13 | impbii 209 |
. . . . . . 7
⊢ ((𝐴 = 𝐴 ∧ 𝐵 = 𝐴) ↔ 𝐵 = 𝐴) |
| 15 | | eqcom 2741 |
. . . . . . 7
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 16 | 14, 15 | bitri 275 |
. . . . . 6
⊢ ((𝐴 = 𝐴 ∧ 𝐵 = 𝐴) ↔ 𝐴 = 𝐵) |
| 17 | 10, 16 | bitrdi 287 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} = {𝐴} ↔ 𝐴 = 𝐵)) |
| 18 | 7, 17 | bitrid 283 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} = {𝐴, 𝐵} ↔ 𝐴 = 𝐵)) |
| 19 | 18 | anbi1d 631 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶))) |
| 20 | | dfsn2 4619 |
. . . . . . . 8
⊢ {𝐴} = {𝐴, 𝐴} |
| 21 | | preq2 4714 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) |
| 22 | 20, 21 | eqtr2id 2782 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 23 | 22 | eqeq1d 2736 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴} = 𝐶)) |
| 24 | | eqcom 2741 |
. . . . . 6
⊢ ({𝐴} = 𝐶 ↔ 𝐶 = {𝐴}) |
| 25 | 23, 24 | bitrdi 287 |
. . . . 5
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ 𝐶 = {𝐴})) |
| 26 | 25 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ 𝐶 = {𝐴}))) |
| 27 | 26 | pm5.32d 577 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
| 28 | 19, 27 | bitrd 279 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
| 29 | 2, 6, 28 | 3bitrd 305 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |