Proof of Theorem opeqsng
Step | Hyp | Ref
| Expression |
1 | | dfopg 4802 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
2 | 1 | eqeq1d 2740 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = {𝐶} ↔ {{𝐴}, {𝐴, 𝐵}} = {𝐶})) |
3 | | snex 5354 |
. . . 4
⊢ {𝐴} ∈ V |
4 | | prex 5355 |
. . . 4
⊢ {𝐴, 𝐵} ∈ V |
5 | 3, 4 | preqsn 4792 |
. . 3
⊢ ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶)) |
6 | 5 | a1i 11 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶))) |
7 | | eqcom 2745 |
. . . . 5
⊢ ({𝐴} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐴}) |
8 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) |
9 | | simpr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) |
10 | 8, 9 | preqsnd 4789 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} = {𝐴} ↔ (𝐴 = 𝐴 ∧ 𝐵 = 𝐴))) |
11 | | simpr 485 |
. . . . . . . 8
⊢ ((𝐴 = 𝐴 ∧ 𝐵 = 𝐴) → 𝐵 = 𝐴) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢ 𝐴 = 𝐴 |
13 | 12 | jctl 524 |
. . . . . . . 8
⊢ (𝐵 = 𝐴 → (𝐴 = 𝐴 ∧ 𝐵 = 𝐴)) |
14 | 11, 13 | impbii 208 |
. . . . . . 7
⊢ ((𝐴 = 𝐴 ∧ 𝐵 = 𝐴) ↔ 𝐵 = 𝐴) |
15 | | eqcom 2745 |
. . . . . . 7
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
16 | 14, 15 | bitri 274 |
. . . . . 6
⊢ ((𝐴 = 𝐴 ∧ 𝐵 = 𝐴) ↔ 𝐴 = 𝐵) |
17 | 10, 16 | bitrdi 287 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} = {𝐴} ↔ 𝐴 = 𝐵)) |
18 | 7, 17 | bitrid 282 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} = {𝐴, 𝐵} ↔ 𝐴 = 𝐵)) |
19 | 18 | anbi1d 630 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶))) |
20 | | dfsn2 4574 |
. . . . . . . 8
⊢ {𝐴} = {𝐴, 𝐴} |
21 | | preq2 4670 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) |
22 | 20, 21 | eqtr2id 2791 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
23 | 22 | eqeq1d 2740 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴} = 𝐶)) |
24 | | eqcom 2745 |
. . . . . 6
⊢ ({𝐴} = 𝐶 ↔ 𝐶 = {𝐴}) |
25 | 23, 24 | bitrdi 287 |
. . . . 5
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ 𝐶 = {𝐴})) |
26 | 25 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ 𝐶 = {𝐴}))) |
27 | 26 | pm5.32d 577 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
28 | 19, 27 | bitrd 278 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
29 | 2, 6, 28 | 3bitrd 305 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |