Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsss Structured version   Visualization version   GIF version

Theorem prsss 33906
Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsss ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))

Proof of Theorem prsss
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21ineq1i 4179 . . . 4 ( ∩ (𝐴 × 𝐴)) = (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴))
3 inass 4191 . . . 4 (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)))
42, 3eqtri 2752 . . 3 ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)))
5 xpss12 5653 . . . . . 6 ((𝐴𝐵𝐴𝐵) → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵))
65anidms 566 . . . . 5 (𝐴𝐵 → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵))
7 sseqin2 4186 . . . . 5 ((𝐴 × 𝐴) ⊆ (𝐵 × 𝐵) ↔ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
86, 7sylib 218 . . . 4 (𝐴𝐵 → ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
98ineq2d 4183 . . 3 (𝐴𝐵 → ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
104, 9eqtrid 2776 . 2 (𝐴𝐵 → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
1110adantl 481 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914   × cxp 5636  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-opab 5170  df-xp 5644
This theorem is referenced by:  prsssdm  33907  ordtrestNEW  33911  ordtrest2NEW  33913
  Copyright terms: Public domain W3C validator