![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prsss | Structured version Visualization version GIF version |
Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
Ref | Expression |
---|---|
ordtNEW.b | ⊢ 𝐵 = (Base‘𝐾) |
ordtNEW.l | ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
prsss | ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtNEW.l | . . . . 5 ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) | |
2 | 1 | ineq1i 4237 | . . . 4 ⊢ ( ≤ ∩ (𝐴 × 𝐴)) = (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴)) |
3 | inass 4249 | . . . 4 ⊢ (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) | |
4 | 2, 3 | eqtri 2768 | . . 3 ⊢ ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) |
5 | xpss12 5715 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵)) | |
6 | 5 | anidms 566 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵)) |
7 | sseqin2 4244 | . . . . 5 ⊢ ((𝐴 × 𝐴) ⊆ (𝐵 × 𝐵) ↔ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) | |
8 | 6, 7 | sylib 218 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
9 | 8 | ineq2d 4241 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
10 | 4, 9 | eqtrid 2792 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
11 | 10 | adantl 481 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 × cxp 5698 ‘cfv 6573 Basecbs 17258 lecple 17318 Proset cproset 18363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: prsssdm 33863 ordtrestNEW 33867 ordtrest2NEW 33869 |
Copyright terms: Public domain | W3C validator |