Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsss Structured version   Visualization version   GIF version

Theorem prsss 31768
Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsss ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))

Proof of Theorem prsss
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21ineq1i 4139 . . . 4 ( ∩ (𝐴 × 𝐴)) = (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴))
3 inass 4150 . . . 4 (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)))
42, 3eqtri 2766 . . 3 ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)))
5 xpss12 5595 . . . . . 6 ((𝐴𝐵𝐴𝐵) → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵))
65anidms 566 . . . . 5 (𝐴𝐵 → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵))
7 sseqin2 4146 . . . . 5 ((𝐴 × 𝐴) ⊆ (𝐵 × 𝐵) ↔ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
86, 7sylib 217 . . . 4 (𝐴𝐵 → ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
98ineq2d 4143 . . 3 (𝐴𝐵 → ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
104, 9syl5eq 2791 . 2 (𝐴𝐵 → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
1110adantl 481 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883   × cxp 5578  cfv 6418  Basecbs 16840  lecple 16895   Proset cproset 17926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-xp 5586
This theorem is referenced by:  prsssdm  31769  ordtrestNEW  31773  ordtrest2NEW  31775
  Copyright terms: Public domain W3C validator