| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prsss | Structured version Visualization version GIF version | ||
| Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| ordtNEW.b | ⊢ 𝐵 = (Base‘𝐾) |
| ordtNEW.l | ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) |
| Ref | Expression |
|---|---|
| prsss | ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtNEW.l | . . . . 5 ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) | |
| 2 | 1 | ineq1i 4182 | . . . 4 ⊢ ( ≤ ∩ (𝐴 × 𝐴)) = (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴)) |
| 3 | inass 4194 | . . . 4 ⊢ (((le‘𝐾) ∩ (𝐵 × 𝐵)) ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) | |
| 4 | 2, 3 | eqtri 2753 | . . 3 ⊢ ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) |
| 5 | xpss12 5656 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵)) | |
| 6 | 5 | anidms 566 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐴) ⊆ (𝐵 × 𝐵)) |
| 7 | sseqin2 4189 | . . . . 5 ⊢ ((𝐴 × 𝐴) ⊆ (𝐵 × 𝐵) ↔ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
| 9 | 8 | ineq2d 4186 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((le‘𝐾) ∩ ((𝐵 × 𝐵) ∩ (𝐴 × 𝐴))) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
| 10 | 4, 9 | eqtrid 2777 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
| 11 | 10 | adantl 481 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 × cxp 5639 ‘cfv 6514 Basecbs 17186 lecple 17234 Proset cproset 18260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: prsssdm 33914 ordtrestNEW 33918 ordtrest2NEW 33920 |
| Copyright terms: Public domain | W3C validator |