![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prsss | Structured version Visualization version GIF version |
Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
Ref | Expression |
---|---|
ordtNEW.b | β’ π΅ = (BaseβπΎ) |
ordtNEW.l | β’ β€ = ((leβπΎ) β© (π΅ Γ π΅)) |
Ref | Expression |
---|---|
prsss | β’ ((πΎ β Proset β§ π΄ β π΅) β ( β€ β© (π΄ Γ π΄)) = ((leβπΎ) β© (π΄ Γ π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtNEW.l | . . . . 5 β’ β€ = ((leβπΎ) β© (π΅ Γ π΅)) | |
2 | 1 | ineq1i 4209 | . . . 4 β’ ( β€ β© (π΄ Γ π΄)) = (((leβπΎ) β© (π΅ Γ π΅)) β© (π΄ Γ π΄)) |
3 | inass 4220 | . . . 4 β’ (((leβπΎ) β© (π΅ Γ π΅)) β© (π΄ Γ π΄)) = ((leβπΎ) β© ((π΅ Γ π΅) β© (π΄ Γ π΄))) | |
4 | 2, 3 | eqtri 2758 | . . 3 β’ ( β€ β© (π΄ Γ π΄)) = ((leβπΎ) β© ((π΅ Γ π΅) β© (π΄ Γ π΄))) |
5 | xpss12 5692 | . . . . . 6 β’ ((π΄ β π΅ β§ π΄ β π΅) β (π΄ Γ π΄) β (π΅ Γ π΅)) | |
6 | 5 | anidms 565 | . . . . 5 β’ (π΄ β π΅ β (π΄ Γ π΄) β (π΅ Γ π΅)) |
7 | sseqin2 4216 | . . . . 5 β’ ((π΄ Γ π΄) β (π΅ Γ π΅) β ((π΅ Γ π΅) β© (π΄ Γ π΄)) = (π΄ Γ π΄)) | |
8 | 6, 7 | sylib 217 | . . . 4 β’ (π΄ β π΅ β ((π΅ Γ π΅) β© (π΄ Γ π΄)) = (π΄ Γ π΄)) |
9 | 8 | ineq2d 4213 | . . 3 β’ (π΄ β π΅ β ((leβπΎ) β© ((π΅ Γ π΅) β© (π΄ Γ π΄))) = ((leβπΎ) β© (π΄ Γ π΄))) |
10 | 4, 9 | eqtrid 2782 | . 2 β’ (π΄ β π΅ β ( β€ β© (π΄ Γ π΄)) = ((leβπΎ) β© (π΄ Γ π΄))) |
11 | 10 | adantl 480 | 1 β’ ((πΎ β Proset β§ π΄ β π΅) β ( β€ β© (π΄ Γ π΄)) = ((leβπΎ) β© (π΄ Γ π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β© cin 3948 β wss 3949 Γ cxp 5675 βcfv 6544 Basecbs 17150 lecple 17210 Proset cproset 18252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-in 3956 df-ss 3966 df-opab 5212 df-xp 5683 |
This theorem is referenced by: prsssdm 33193 ordtrestNEW 33197 ordtrest2NEW 33199 |
Copyright terms: Public domain | W3C validator |