Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsss Structured version   Visualization version   GIF version

Theorem prsss 33192
Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐡 = (Baseβ€˜πΎ)
ordtNEW.l ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
Assertion
Ref Expression
prsss ((𝐾 ∈ Proset ∧ 𝐴 βŠ† 𝐡) β†’ ( ≀ ∩ (𝐴 Γ— 𝐴)) = ((leβ€˜πΎ) ∩ (𝐴 Γ— 𝐴)))

Proof of Theorem prsss
StepHypRef Expression
1 ordtNEW.l . . . . 5 ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
21ineq1i 4209 . . . 4 ( ≀ ∩ (𝐴 Γ— 𝐴)) = (((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡)) ∩ (𝐴 Γ— 𝐴))
3 inass 4220 . . . 4 (((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡)) ∩ (𝐴 Γ— 𝐴)) = ((leβ€˜πΎ) ∩ ((𝐡 Γ— 𝐡) ∩ (𝐴 Γ— 𝐴)))
42, 3eqtri 2758 . . 3 ( ≀ ∩ (𝐴 Γ— 𝐴)) = ((leβ€˜πΎ) ∩ ((𝐡 Γ— 𝐡) ∩ (𝐴 Γ— 𝐴)))
5 xpss12 5692 . . . . . 6 ((𝐴 βŠ† 𝐡 ∧ 𝐴 βŠ† 𝐡) β†’ (𝐴 Γ— 𝐴) βŠ† (𝐡 Γ— 𝐡))
65anidms 565 . . . . 5 (𝐴 βŠ† 𝐡 β†’ (𝐴 Γ— 𝐴) βŠ† (𝐡 Γ— 𝐡))
7 sseqin2 4216 . . . . 5 ((𝐴 Γ— 𝐴) βŠ† (𝐡 Γ— 𝐡) ↔ ((𝐡 Γ— 𝐡) ∩ (𝐴 Γ— 𝐴)) = (𝐴 Γ— 𝐴))
86, 7sylib 217 . . . 4 (𝐴 βŠ† 𝐡 β†’ ((𝐡 Γ— 𝐡) ∩ (𝐴 Γ— 𝐴)) = (𝐴 Γ— 𝐴))
98ineq2d 4213 . . 3 (𝐴 βŠ† 𝐡 β†’ ((leβ€˜πΎ) ∩ ((𝐡 Γ— 𝐡) ∩ (𝐴 Γ— 𝐴))) = ((leβ€˜πΎ) ∩ (𝐴 Γ— 𝐴)))
104, 9eqtrid 2782 . 2 (𝐴 βŠ† 𝐡 β†’ ( ≀ ∩ (𝐴 Γ— 𝐴)) = ((leβ€˜πΎ) ∩ (𝐴 Γ— 𝐴)))
1110adantl 480 1 ((𝐾 ∈ Proset ∧ 𝐴 βŠ† 𝐡) β†’ ( ≀ ∩ (𝐴 Γ— 𝐴)) = ((leβ€˜πΎ) ∩ (𝐴 Γ— 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104   ∩ cin 3948   βŠ† wss 3949   Γ— cxp 5675  β€˜cfv 6544  Basecbs 17150  lecple 17210   Proset cproset 18252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683
This theorem is referenced by:  prsssdm  33193  ordtrestNEW  33197  ordtrest2NEW  33199
  Copyright terms: Public domain W3C validator