Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsrn Structured version   Visualization version   GIF version

Theorem prsrn 33905
Description: Range of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsrn (𝐾 ∈ Proset → ran = 𝐵)

Proof of Theorem prsrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21rneqi 5901 . . . 4 ran = ran ((le‘𝐾) ∩ (𝐵 × 𝐵))
32eleq2i 2820 . . 3 (𝑥 ∈ ran 𝑥 ∈ ran ((le‘𝐾) ∩ (𝐵 × 𝐵)))
4 vex 3451 . . . . 5 𝑥 ∈ V
54elrn2 5856 . . . 4 (𝑥 ∈ ran ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
6 ordtNEW.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 eqid 2729 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
86, 7prsref 18259 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥(le‘𝐾)𝑥)
9 df-br 5108 . . . . . . . . 9 (𝑥(le‘𝐾)𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
108, 9sylib 218 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
11 simpr 484 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥𝐵)
1211, 11opelxpd 5677 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (𝐵 × 𝐵))
1310, 12elind 4163 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
14 opeq1 4837 . . . . . . . . 9 (𝑦 = 𝑥 → ⟨𝑦, 𝑥⟩ = ⟨𝑥, 𝑥⟩)
1514eleq1d 2813 . . . . . . . 8 (𝑦 = 𝑥 → (⟨𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
164, 15spcev 3572 . . . . . . 7 (⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1713, 16syl 17 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1817ex 412 . . . . 5 (𝐾 ∈ Proset → (𝑥𝐵 → ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
19 elinel2 4165 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ⟨𝑦, 𝑥⟩ ∈ (𝐵 × 𝐵))
20 opelxp2 5681 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ (𝐵 × 𝐵) → 𝑥𝐵)
2119, 20syl 17 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2221exlimiv 1930 . . . . 5 (∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2318, 22impbid1 225 . . . 4 (𝐾 ∈ Proset → (𝑥𝐵 ↔ ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
245, 23bitr4id 290 . . 3 (𝐾 ∈ Proset → (𝑥 ∈ ran ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ 𝑥𝐵))
253, 24bitrid 283 . 2 (𝐾 ∈ Proset → (𝑥 ∈ ran 𝑥𝐵))
2625eqrdv 2727 1 (𝐾 ∈ Proset → ran = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  cin 3913  cop 4595   class class class wbr 5107   × cxp 5636  ran crn 5639  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519  df-proset 18255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator