Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsrn Structured version   Visualization version   GIF version

Theorem prsrn 33920
Description: Range of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsrn (𝐾 ∈ Proset → ran = 𝐵)

Proof of Theorem prsrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21rneqi 5872 . . . 4 ran = ran ((le‘𝐾) ∩ (𝐵 × 𝐵))
32eleq2i 2823 . . 3 (𝑥 ∈ ran 𝑥 ∈ ran ((le‘𝐾) ∩ (𝐵 × 𝐵)))
4 vex 3440 . . . . 5 𝑥 ∈ V
54elrn2 5827 . . . 4 (𝑥 ∈ ran ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
6 ordtNEW.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 eqid 2731 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
86, 7prsref 18199 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥(le‘𝐾)𝑥)
9 df-br 5087 . . . . . . . . 9 (𝑥(le‘𝐾)𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
108, 9sylib 218 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
11 simpr 484 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥𝐵)
1211, 11opelxpd 5650 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (𝐵 × 𝐵))
1310, 12elind 4145 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
14 opeq1 4820 . . . . . . . . 9 (𝑦 = 𝑥 → ⟨𝑦, 𝑥⟩ = ⟨𝑥, 𝑥⟩)
1514eleq1d 2816 . . . . . . . 8 (𝑦 = 𝑥 → (⟨𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
164, 15spcev 3556 . . . . . . 7 (⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1713, 16syl 17 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1817ex 412 . . . . 5 (𝐾 ∈ Proset → (𝑥𝐵 → ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
19 elinel2 4147 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ⟨𝑦, 𝑥⟩ ∈ (𝐵 × 𝐵))
20 opelxp2 5654 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ (𝐵 × 𝐵) → 𝑥𝐵)
2119, 20syl 17 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2221exlimiv 1931 . . . . 5 (∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2318, 22impbid1 225 . . . 4 (𝐾 ∈ Proset → (𝑥𝐵 ↔ ∃𝑦𝑦, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
245, 23bitr4id 290 . . 3 (𝐾 ∈ Proset → (𝑥 ∈ ran ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ 𝑥𝐵))
253, 24bitrid 283 . 2 (𝐾 ∈ Proset → (𝑥 ∈ ran 𝑥𝐵))
2625eqrdv 2729 1 (𝐾 ∈ Proset → ran = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  cin 3896  cop 4577   class class class wbr 5086   × cxp 5609  ran crn 5612  cfv 6476  Basecbs 17115  lecple 17163   Proset cproset 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-iota 6432  df-fv 6484  df-proset 18195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator