Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrestNEW Structured version   Visualization version   GIF version

Theorem ordtrestNEW 33888
Description: The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
ordtrestNEW ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))

Proof of Theorem ordtrestNEW
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2 fvex 6835 . . . . . 6 (le‘𝐾) ∈ V
32inex1 5256 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
41, 3eqeltri 2824 . . . 4 ∈ V
54inex1 5256 . . 3 ( ∩ (𝐴 × 𝐴)) ∈ V
6 eqid 2729 . . . 4 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
7 eqid 2729 . . . 4 ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
8 eqid 2729 . . . 4 ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
96, 7, 8ordtval 23074 . . 3 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))))
105, 9mp1i 13 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))))
11 ordttop 23085 . . . . . 6 ( ∈ V → (ordTop‘ ) ∈ Top)
124, 11ax-mp 5 . . . . 5 (ordTop‘ ) ∈ Top
13 ordtNEW.b . . . . . . 7 𝐵 = (Base‘𝐾)
14 fvex 6835 . . . . . . 7 (Base‘𝐾) ∈ V
1513, 14eqeltri 2824 . . . . . 6 𝐵 ∈ V
1615ssex 5260 . . . . 5 (𝐴𝐵𝐴 ∈ V)
17 resttop 23045 . . . . 5 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V) → ((ordTop‘ ) ↾t 𝐴) ∈ Top)
1812, 16, 17sylancr 587 . . . 4 (𝐴𝐵 → ((ordTop‘ ) ↾t 𝐴) ∈ Top)
1918adantl 481 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((ordTop‘ ) ↾t 𝐴) ∈ Top)
2013ressprs 32908 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
21 eqid 2729 . . . . . . . . . 10 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
22 eqid 2729 . . . . . . . . . 10 ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2321, 22prsdm 33881 . . . . . . . . 9 ((𝐾s 𝐴) ∈ Proset → dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = (Base‘(𝐾s 𝐴)))
2420, 23syl 17 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = (Base‘(𝐾s 𝐴)))
25 eqid 2729 . . . . . . . . . . . . . 14 (𝐾s 𝐴) = (𝐾s 𝐴)
2625, 13ressbas2 17149 . . . . . . . . . . . . 13 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
27 fvex 6835 . . . . . . . . . . . . 13 (Base‘(𝐾s 𝐴)) ∈ V
2826, 27eqeltrdi 2836 . . . . . . . . . . . 12 (𝐴𝐵𝐴 ∈ V)
29 eqid 2729 . . . . . . . . . . . . 13 (le‘𝐾) = (le‘𝐾)
3025, 29ressle 17284 . . . . . . . . . . . 12 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3128, 30syl 17 . . . . . . . . . . 11 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3231adantl 481 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3326adantl 481 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
3433sqxpeqd 5651 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
3532, 34ineq12d 4172 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
3635dmeqd 5848 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
3724, 36, 333eqtr4d 2774 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴)
3813, 1prsss 33883 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
3938dmeqd 5848 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴)))
4013, 1prsdm 33881 . . . . . . . . . 10 (𝐾 ∈ Proset → dom = 𝐵)
4140sseq2d 3968 . . . . . . . . 9 (𝐾 ∈ Proset → (𝐴 ⊆ dom 𝐴𝐵))
4241biimpar 477 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 ⊆ dom )
43 sseqin2 4174 . . . . . . . 8 (𝐴 ⊆ dom ↔ (dom 𝐴) = 𝐴)
4442, 43sylib 218 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (dom 𝐴) = 𝐴)
4537, 39, 443eqtr4d 2774 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = (dom 𝐴))
464, 11mp1i 13 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘ ) ∈ Top)
4716adantl 481 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 ∈ V)
48 eqid 2729 . . . . . . . . . 10 dom = dom
4948ordttopon 23078 . . . . . . . . 9 ( ∈ V → (ordTop‘ ) ∈ (TopOn‘dom ))
504, 49mp1i 13 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘ ) ∈ (TopOn‘dom ))
51 toponmax 22811 . . . . . . . 8 ((ordTop‘ ) ∈ (TopOn‘dom ) → dom ∈ (ordTop‘ ))
5250, 51syl 17 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ∈ (ordTop‘ ))
53 elrestr 17332 . . . . . . 7 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V ∧ dom ∈ (ordTop‘ )) → (dom 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
5446, 47, 52, 53syl3anc 1373 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (dom 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
5545, 54eqeltrd 2828 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘ ) ↾t 𝐴))
5655snssd 4760 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → {dom ( ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘ ) ↾t 𝐴))
57 rabeq 3409 . . . . . . . . 9 (dom ( ∩ (𝐴 × 𝐴)) = (dom 𝐴) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
5845, 57syl 17 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
5945, 58mpteq12dv 5179 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}))
6059rneqd 5880 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}))
61 inrab2 4268 . . . . . . . . . 10 ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦 𝑥}
62 inss2 4189 . . . . . . . . . . . . . 14 (dom 𝐴) ⊆ 𝐴
63 simpr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → 𝑦 ∈ (dom 𝐴))
6462, 63sselid 3933 . . . . . . . . . . . . 13 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → 𝑦𝐴)
65 simpr 484 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → 𝑥 ∈ (dom 𝐴))
6662, 65sselid 3933 . . . . . . . . . . . . . 14 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → 𝑥𝐴)
6766adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → 𝑥𝐴)
68 brinxp 5698 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥𝐴) → (𝑦 𝑥𝑦( ∩ (𝐴 × 𝐴))𝑥))
6964, 67, 68syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (𝑦 𝑥𝑦( ∩ (𝐴 × 𝐴))𝑥))
7069notbid 318 . . . . . . . . . . 11 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (¬ 𝑦 𝑥 ↔ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥))
7170rabbidva 3401 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦 𝑥} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
7261, 71eqtrid 2776 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
734, 11mp1i 13 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → (ordTop‘ ) ∈ Top)
7447adantr 480 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → 𝐴 ∈ V)
75 simpl 482 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐾 ∈ Proset )
76 inss1 4188 . . . . . . . . . . . 12 (dom 𝐴) ⊆ dom
7776sseli 3931 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐴) → 𝑥 ∈ dom )
7848ordtopn1 23079 . . . . . . . . . . . . 13 (( ∈ V ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
794, 78mpan 690 . . . . . . . . . . . 12 (𝑥 ∈ dom → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
8079adantl 481 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
8175, 77, 80syl2an 596 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
82 elrestr 17332 . . . . . . . . . 10 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V ∧ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ )) → ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
8373, 74, 81, 82syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
8472, 83eqeltrrd 2829 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘ ) ↾t 𝐴))
8584fmpttd 7049 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}):(dom 𝐴)⟶((ordTop‘ ) ↾t 𝐴))
8685frnd 6660 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘ ) ↾t 𝐴))
8760, 86eqsstrd 3970 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘ ) ↾t 𝐴))
88 rabeq 3409 . . . . . . . . 9 (dom ( ∩ (𝐴 × 𝐴)) = (dom 𝐴) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
8945, 88syl 17 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
9045, 89mpteq12dv 5179 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))
9190rneqd 5880 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))
92 inrab2 4268 . . . . . . . . . 10 ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥 𝑦}
93 brinxp 5698 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴) → (𝑥 𝑦𝑥( ∩ (𝐴 × 𝐴))𝑦))
9467, 64, 93syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (𝑥 𝑦𝑥( ∩ (𝐴 × 𝐴))𝑦))
9594notbid 318 . . . . . . . . . . 11 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (¬ 𝑥 𝑦 ↔ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦))
9695rabbidva 3401 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥 𝑦} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
9792, 96eqtrid 2776 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
9848ordtopn2 23080 . . . . . . . . . . . . 13 (( ∈ V ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
994, 98mpan 690 . . . . . . . . . . . 12 (𝑥 ∈ dom → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
10099adantl 481 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
10175, 77, 100syl2an 596 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
102 elrestr 17332 . . . . . . . . . 10 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V ∧ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ )) → ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
10373, 74, 101, 102syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
10497, 103eqeltrrd 2829 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘ ) ↾t 𝐴))
105104fmpttd 7049 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}):(dom 𝐴)⟶((ordTop‘ ) ↾t 𝐴))
106105frnd 6660 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘ ) ↾t 𝐴))
10791, 106eqsstrd 3970 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘ ) ↾t 𝐴))
10887, 107unssd 4143 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘ ) ↾t 𝐴))
10956, 108unssd 4143 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘ ) ↾t 𝐴))
110 tgfiss 22876 . . 3 ((((ordTop‘ ) ↾t 𝐴) ∈ Top ∧ ({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘ ) ↾t 𝐴)) → (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘ ) ↾t 𝐴))
11119, 109, 110syl2anc 584 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘ ) ↾t 𝐴))
11210, 111eqsstrd 3970 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  cun 3901  cin 3902  wss 3903  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  cfv 6482  (class class class)co 7349  ficfi 9300  Basecbs 17120  s cress 17141  lecple 17168  t crest 17324  topGenctg 17341  ordTopcordt 17403   Proset cproset 18198  Topctop 22778  TopOnctopon 22795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-ple 17181  df-rest 17326  df-topgen 17347  df-ordt 17405  df-proset 18200  df-top 22779  df-topon 22796  df-bases 22831
This theorem is referenced by:  ordtrest2NEW  33890
  Copyright terms: Public domain W3C validator