Step | Hyp | Ref
| Expression |
1 | | ordtNEW.l |
. . . . 5
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
2 | | fvex 6769 |
. . . . . 6
⊢
(le‘𝐾) ∈
V |
3 | 2 | inex1 5236 |
. . . . 5
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
4 | 1, 3 | eqeltri 2835 |
. . . 4
⊢ ≤ ∈
V |
5 | 4 | inex1 5236 |
. . 3
⊢ ( ≤ ∩
(𝐴 × 𝐴)) ∈ V |
6 | | eqid 2738 |
. . . 4
⊢ dom (
≤
∩ (𝐴 × 𝐴)) = dom ( ≤ ∩ (𝐴 × 𝐴)) |
7 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ dom ( ≤ ∩
(𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) |
8 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ dom ( ≤ ∩
(𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) |
9 | 6, 7, 8 | ordtval 22248 |
. . 3
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom ( ≤ ∩
(𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦})))))) |
10 | 5, 9 | mp1i 13 |
. 2
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom ( ≤ ∩
(𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦})))))) |
11 | | ordttop 22259 |
. . . . . 6
⊢ ( ≤ ∈ V
→ (ordTop‘ ≤ ) ∈
Top) |
12 | 4, 11 | ax-mp 5 |
. . . . 5
⊢
(ordTop‘ ≤ ) ∈
Top |
13 | | ordtNEW.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
14 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝐾)
∈ V |
15 | 13, 14 | eqeltri 2835 |
. . . . . 6
⊢ 𝐵 ∈ V |
16 | 15 | ssex 5240 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
17 | | resttop 22219 |
. . . . 5
⊢
(((ordTop‘ ≤ ) ∈ Top ∧
𝐴 ∈ V) →
((ordTop‘ ≤ ) ↾t
𝐴) ∈
Top) |
18 | 12, 16, 17 | sylancr 586 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 → ((ordTop‘ ≤ ) ↾t
𝐴) ∈
Top) |
19 | 18 | adantl 481 |
. . 3
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((ordTop‘ ≤ ) ↾t
𝐴) ∈
Top) |
20 | 13 | ressprs 31143 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘(𝐾
↾s 𝐴)) =
(Base‘(𝐾
↾s 𝐴)) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) =
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) |
23 | 21, 22 | prsdm 31766 |
. . . . . . . . 9
⊢ ((𝐾 ↾s 𝐴) ∈ Proset → dom
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) =
(Base‘(𝐾
↾s 𝐴))) |
24 | 20, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
25 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) |
26 | 25, 13 | ressbas2 16875 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
27 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝐾
↾s 𝐴))
∈ V |
28 | 26, 27 | eqeltrdi 2847 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
29 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(le‘𝐾) =
(le‘𝐾) |
30 | 25, 29 | ressle 17013 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
31 | 28, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝐵 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
32 | 31 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
33 | 26 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
34 | 33 | sqxpeqd 5612 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
35 | 32, 34 | ineq12d 4144 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
36 | 35 | dmeqd 5803 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
37 | 24, 36, 33 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴) |
38 | 13, 1 | prsss 31768 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
39 | 38 | dmeqd 5803 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
40 | 13, 1 | prsdm 31766 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Proset → dom ≤ = 𝐵) |
41 | 40 | sseq2d 3949 |
. . . . . . . . 9
⊢ (𝐾 ∈ Proset → (𝐴 ⊆ dom ≤ ↔ 𝐴 ⊆ 𝐵)) |
42 | 41 | biimpar 477 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ dom ≤ ) |
43 | | sseqin2 4146 |
. . . . . . . 8
⊢ (𝐴 ⊆ dom ≤ ↔ (dom ≤ ∩
𝐴) = 𝐴) |
44 | 42, 43 | sylib 217 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (dom ≤ ∩ 𝐴) = 𝐴) |
45 | 37, 39, 44 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = (dom ≤ ∩ 𝐴)) |
46 | 4, 11 | mp1i 13 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘ ≤ ) ∈
Top) |
47 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
48 | | eqid 2738 |
. . . . . . . . . 10
⊢ dom ≤ = dom
≤ |
49 | 48 | ordttopon 22252 |
. . . . . . . . 9
⊢ ( ≤ ∈ V
→ (ordTop‘ ≤ ) ∈
(TopOn‘dom ≤ )) |
50 | 4, 49 | mp1i 13 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘ ≤ ) ∈
(TopOn‘dom ≤ )) |
51 | | toponmax 21983 |
. . . . . . . 8
⊢
((ordTop‘ ≤ ) ∈
(TopOn‘dom ≤ ) → dom ≤ ∈
(ordTop‘ ≤ )) |
52 | 50, 51 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ≤ ∈ (ordTop‘
≤
)) |
53 | | elrestr 17056 |
. . . . . . 7
⊢
(((ordTop‘ ≤ ) ∈ Top ∧
𝐴 ∈ V ∧ dom ≤ ∈
(ordTop‘ ≤ )) → (dom ≤ ∩
𝐴) ∈ ((ordTop‘
≤ )
↾t 𝐴)) |
54 | 46, 47, 52, 53 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (dom ≤ ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
55 | 45, 54 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
56 | 55 | snssd 4739 |
. . . 4
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → {dom ( ≤ ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
57 | | rabeq 3408 |
. . . . . . . . 9
⊢ (dom (
≤
∩ (𝐴 × 𝐴)) = (dom ≤ ∩ 𝐴) → {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) |
58 | 45, 57 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) |
59 | 45, 58 | mpteq12dv 5161 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥})) |
60 | 59 | rneqd 5836 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥})) |
61 | | inrab2 4238 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∩ 𝐴) = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦 ≤ 𝑥} |
62 | | inss2 4160 |
. . . . . . . . . . . . . 14
⊢ (dom
≤
∩ 𝐴) ⊆ 𝐴 |
63 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → 𝑦 ∈ (dom ≤ ∩ 𝐴)) |
64 | 62, 63 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → 𝑦 ∈ 𝐴) |
65 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → 𝑥 ∈ (dom ≤ ∩ 𝐴)) |
66 | 62, 65 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
67 | 66 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
68 | | brinxp 5656 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ≤ 𝑥 ↔ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥)) |
69 | 64, 67, 68 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → (𝑦 ≤ 𝑥 ↔ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥)) |
70 | 69 | notbid 317 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → (¬ 𝑦 ≤ 𝑥 ↔ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥)) |
71 | 70 | rabbidva 3402 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦 ≤ 𝑥} = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) |
72 | 61, 71 | syl5eq 2791 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → ({𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∩ 𝐴) = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) |
73 | 4, 11 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → (ordTop‘ ≤ ) ∈
Top) |
74 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → 𝐴 ∈ V) |
75 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐾 ∈ Proset ) |
76 | | inss1 4159 |
. . . . . . . . . . . 12
⊢ (dom
≤
∩ 𝐴) ⊆ dom ≤ |
77 | 76 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom ≤ ∩ 𝐴) → 𝑥 ∈ dom ≤ ) |
78 | 48 | ordtopn1 22253 |
. . . . . . . . . . . . 13
⊢ (( ≤ ∈ V
∧ 𝑥 ∈ dom ≤ ) →
{𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥} ∈ (ordTop‘ ≤ )) |
79 | 4, 78 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ dom ≤ → {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∈ (ordTop‘ ≤ )) |
80 | 79 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ dom ≤ ) → {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∈ (ordTop‘ ≤ )) |
81 | 75, 77, 80 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∈ (ordTop‘ ≤ )) |
82 | | elrestr 17056 |
. . . . . . . . . 10
⊢
(((ordTop‘ ≤ ) ∈ Top ∧
𝐴 ∈ V ∧ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∈ (ordTop‘ ≤ )) → ({𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
83 | 73, 74, 81, 82 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → ({𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
84 | 72, 83 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
85 | 84 | fmpttd 6971 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}):(dom ≤ ∩ 𝐴)⟶((ordTop‘ ≤ ) ↾t
𝐴)) |
86 | 85 | frnd 6592 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ran (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘ ≤ ) ↾t
𝐴)) |
87 | 60, 86 | eqsstrd 3955 |
. . . . 5
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘ ≤ ) ↾t
𝐴)) |
88 | | rabeq 3408 |
. . . . . . . . 9
⊢ (dom (
≤
∩ (𝐴 × 𝐴)) = (dom ≤ ∩ 𝐴) → {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) |
89 | 45, 88 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) |
90 | 45, 89 | mpteq12dv 5161 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦})) |
91 | 90 | rneqd 5836 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦})) |
92 | | inrab2 4238 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∩ 𝐴) = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥 ≤ 𝑦} |
93 | | brinxp 5656 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 ↔ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦)) |
94 | 67, 64, 93 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → (𝑥 ≤ 𝑦 ↔ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦)) |
95 | 94 | notbid 317 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) ∧ 𝑦 ∈ (dom ≤ ∩ 𝐴)) → (¬ 𝑥 ≤ 𝑦 ↔ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦)) |
96 | 95 | rabbidva 3402 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥 ≤ 𝑦} = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) |
97 | 92, 96 | syl5eq 2791 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → ({𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∩ 𝐴) = {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) |
98 | 48 | ordtopn2 22254 |
. . . . . . . . . . . . 13
⊢ (( ≤ ∈ V
∧ 𝑥 ∈ dom ≤ ) →
{𝑦 ∈ dom ≤ ∣
¬ 𝑥 ≤ 𝑦} ∈ (ordTop‘ ≤ )) |
99 | 4, 98 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ dom ≤ → {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∈ (ordTop‘ ≤ )) |
100 | 99 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ dom ≤ ) → {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∈ (ordTop‘ ≤ )) |
101 | 75, 77, 100 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∈ (ordTop‘ ≤ )) |
102 | | elrestr 17056 |
. . . . . . . . . 10
⊢
(((ordTop‘ ≤ ) ∈ Top ∧
𝐴 ∈ V ∧ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∈ (ordTop‘ ≤ )) → ({𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
103 | 73, 74, 101, 102 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → ({𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
104 | 97, 103 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ (dom ≤ ∩ 𝐴)) → {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘ ≤ ) ↾t
𝐴)) |
105 | 104 | fmpttd 6971 |
. . . . . . 7
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}):(dom ≤ ∩ 𝐴)⟶((ordTop‘ ≤ ) ↾t
𝐴)) |
106 | 105 | frnd 6592 |
. . . . . 6
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ran (𝑥 ∈ (dom ≤ ∩ 𝐴) ↦ {𝑦 ∈ (dom ≤ ∩ 𝐴) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘ ≤ ) ↾t
𝐴)) |
107 | 91, 106 | eqsstrd 3955 |
. . . . 5
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘ ≤ ) ↾t
𝐴)) |
108 | 87, 107 | unssd 4116 |
. . . 4
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
109 | 56, 108 | unssd 4116 |
. . 3
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ({dom ( ≤ ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
110 | | tgfiss 22049 |
. . 3
⊢
((((ordTop‘ ≤ ) ↾t
𝐴) ∈ Top ∧ ({dom (
≤
∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴))
→ (topGen‘(fi‘({dom ( ≤ ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
111 | 19, 109, 110 | syl2anc 583 |
. 2
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (topGen‘(fi‘({dom (
≤
∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ≤ ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ≤ ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ≤ ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
112 | 10, 111 | eqsstrd 3955 |
1
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |