Step | Hyp | Ref
| Expression |
1 | | ordtrest2NEW.2 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Toset) |
2 | | tospos 18053 |
. . . 4
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) |
3 | | posprs 17949 |
. . . 4
⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset
) |
4 | 1, 2, 3 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐾 ∈ Proset ) |
5 | | ordtrest2NEW.3 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
6 | | ordtNEW.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
7 | | ordtNEW.l |
. . . 4
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
8 | 6, 7 | ordtrestNEW 31773 |
. . 3
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
9 | 4, 5, 8 | syl2anc 583 |
. 2
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ⊆ ((ordTop‘
≤ )
↾t 𝐴)) |
10 | | eqid 2738 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) = ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) |
11 | | eqid 2738 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) = ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) |
12 | 6, 7, 10, 11 | ordtprsval 31770 |
. . . . . . 7
⊢ (𝐾 ∈ Proset →
(ordTop‘ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))))) |
13 | 4, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ordTop‘ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))))) |
14 | 13 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴) =
((topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))))) ↾t 𝐴)) |
15 | | fibas 22035 |
. . . . . 6
⊢
(fi‘({𝐵} ∪
(ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ∈ TopBases |
16 | 6 | fvexi 6770 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
18 | 17, 5 | ssexd 5243 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) |
19 | | tgrest 22218 |
. . . . . 6
⊢
(((fi‘({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) →
(topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))))) ↾t 𝐴)) |
20 | 15, 18, 19 | sylancr 586 |
. . . . 5
⊢ (𝜑 →
(topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))))) ↾t 𝐴)) |
21 | 14, 20 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴) =
(topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴))) |
22 | | firest 17060 |
. . . . 5
⊢
(fi‘(({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴)) = ((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴) |
23 | 22 | fveq2i 6759 |
. . . 4
⊢
(topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴)) |
24 | 21, 23 | eqtr4di 2797 |
. . 3
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴) =
(topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴)))) |
25 | | fvex 6769 |
. . . . . . . 8
⊢
(le‘𝐾) ∈
V |
26 | 25 | inex1 5236 |
. . . . . . 7
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
27 | 7, 26 | eqeltri 2835 |
. . . . . 6
⊢ ≤ ∈
V |
28 | 27 | inex1 5236 |
. . . . 5
⊢ ( ≤ ∩
(𝐴 × 𝐴)) ∈ V |
29 | | ordttop 22259 |
. . . . 5
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top) |
30 | 28, 29 | mp1i 13 |
. . . 4
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ Top) |
31 | 6, 7, 10, 11 | ordtprsuni 31771 |
. . . . . . . . 9
⊢ (𝐾 ∈ Proset → 𝐵 = ∪
({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) |
32 | 4, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = ∪ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) |
33 | 32, 17 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → ∪ ({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V) |
34 | | uniexb 7592 |
. . . . . . 7
⊢ (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V ↔ ∪ ({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V) |
35 | 33, 34 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V) |
36 | | restval 17054 |
. . . . . 6
⊢ ((({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴))) |
37 | 35, 18, 36 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴))) |
38 | | sseqin2 4146 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
39 | 5, 38 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
40 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ dom (
≤
∩ (𝐴 × 𝐴)) = dom ( ≤ ∩ (𝐴 × 𝐴)) |
41 | 40 | ordttopon 22252 |
. . . . . . . . . . . . . 14
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ≤ ∩
(𝐴 × 𝐴)))) |
42 | 28, 41 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ (TopOn‘dom (
≤
∩ (𝐴 × 𝐴)))) |
43 | 6, 7 | prsssdm 31769 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
44 | 4, 5, 43 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
45 | 44 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (TopOn‘dom ( ≤ ∩
(𝐴 × 𝐴))) = (TopOn‘𝐴)) |
46 | 42, 45 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ (TopOn‘𝐴)) |
47 | | toponmax 21983 |
. . . . . . . . . . . 12
⊢
((ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
49 | 39, 48 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
50 | | elsni 4575 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ {𝐵} → 𝑣 = 𝐵) |
51 | 50 | ineq1d 4142 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ {𝐵} → (𝑣 ∩ 𝐴) = (𝐵 ∩ 𝐴)) |
52 | 51 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝐵} → ((𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (𝐵 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
53 | 49, 52 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ {𝐵} → (𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
54 | 53 | ralrimiv 3106 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑣 ∈ {𝐵} (𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
55 | | ordtrest2NEW.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
56 | 6, 7, 1, 5, 55 | ordtrest2NEWlem 31774 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
57 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(ODual‘𝐾) =
(ODual‘𝐾) |
58 | 57, 6 | odubas 17925 |
. . . . . . . . . . 11
⊢ 𝐵 =
(Base‘(ODual‘𝐾)) |
59 | 7 | cnveqi 5772 |
. . . . . . . . . . . 12
⊢ ◡ ≤ = ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) |
60 | | cnvin 6037 |
. . . . . . . . . . . . 13
⊢ ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) = (◡(le‘𝐾) ∩ ◡(𝐵 × 𝐵)) |
61 | | cnvxp 6049 |
. . . . . . . . . . . . . 14
⊢ ◡(𝐵 × 𝐵) = (𝐵 × 𝐵) |
62 | 61 | ineq2i 4140 |
. . . . . . . . . . . . 13
⊢ (◡(le‘𝐾) ∩ ◡(𝐵 × 𝐵)) = (◡(le‘𝐾) ∩ (𝐵 × 𝐵)) |
63 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(le‘𝐾) =
(le‘𝐾) |
64 | 57, 63 | oduleval 17923 |
. . . . . . . . . . . . . 14
⊢ ◡(le‘𝐾) = (le‘(ODual‘𝐾)) |
65 | 64 | ineq1i 4139 |
. . . . . . . . . . . . 13
⊢ (◡(le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵)) |
66 | 60, 62, 65 | 3eqtri 2770 |
. . . . . . . . . . . 12
⊢ ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵)) |
67 | 59, 66 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ◡ ≤ =
((le‘(ODual‘𝐾))
∩ (𝐵 × 𝐵)) |
68 | 57 | odutos 31148 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Toset →
(ODual‘𝐾) ∈
Toset) |
69 | 1, 68 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ODual‘𝐾) ∈ Toset) |
70 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
71 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ V |
72 | 70, 71 | brcnv 5780 |
. . . . . . . . . . . . . . 15
⊢ (𝑦◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦) |
73 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
74 | 71, 73 | brcnv 5780 |
. . . . . . . . . . . . . . 15
⊢ (𝑧◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧) |
75 | 72, 74 | anbi12ci 627 |
. . . . . . . . . . . . . 14
⊢ ((𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤
𝑥) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
76 | 75 | rabbii 3397 |
. . . . . . . . . . . . 13
⊢ {𝑧 ∈ 𝐵 ∣ (𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥)} = {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
77 | 76, 55 | eqsstrid 3965 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥)} ⊆ 𝐴) |
78 | 77 | ancom2s 646 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥)} ⊆ 𝐴) |
79 | 58, 67, 69, 5, 78 | ordtrest2NEWlem 31774 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴)))) |
80 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑤 ∈ V |
81 | 80, 71 | brcnv 5780 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑤) |
82 | 81 | bicomi 223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ≤ 𝑤 ↔ 𝑤◡
≤
𝑧) |
83 | 82 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑤◡
≤
𝑧)) |
84 | 83 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (¬ 𝑧 ≤ 𝑤 ↔ ¬ 𝑤◡
≤
𝑧)) |
85 | 84 | rabbidv 3404 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤} = {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧}) |
86 | 85 | mpteq2dv 5172 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) = (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})) |
87 | 86 | rneqd 5836 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) = ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})) |
88 | 6 | ressprs 31143 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) |
89 | 4, 5, 88 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 ↾s 𝐴) ∈ Proset ) |
90 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(𝐾
↾s 𝐴)) =
(Base‘(𝐾
↾s 𝐴)) |
91 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) =
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) |
92 | 90, 91 | ordtcnvNEW 31772 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ↾s 𝐴) ∈ Proset →
(ordTop‘◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) =
(ordTop‘((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))))) |
93 | 89, 92 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ordTop‘◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) = (ordTop‘((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))))) |
94 | 6, 7 | prsss 31768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
95 | 4, 5, 94 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
96 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) |
97 | 96, 63 | ressle 17013 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
98 | 18, 97 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
99 | 96, 6 | ressbas2 16875 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
100 | 5, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
101 | 100 | sqxpeqd 5612 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
102 | 98, 101 | ineq12d 4144 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
103 | 95, 102 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
104 | 103 | cnveqd 5773 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ◡( ≤ ∩ (𝐴 × 𝐴)) = ◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
105 | 104 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ordTop‘◡( ≤ ∩ (𝐴 × 𝐴))) = (ordTop‘◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))))) |
106 | 103 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) =
(ordTop‘((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))))) |
107 | 93, 105, 106 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ordTop‘◡( ≤ ∩ (𝐴 × 𝐴))) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
108 | | cnvin 6037 |
. . . . . . . . . . . . . . 15
⊢ ◡( ≤ ∩ (𝐴 × 𝐴)) = (◡ ≤ ∩ ◡(𝐴 × 𝐴)) |
109 | | cnvxp 6049 |
. . . . . . . . . . . . . . . 16
⊢ ◡(𝐴 × 𝐴) = (𝐴 × 𝐴) |
110 | 109 | ineq2i 4140 |
. . . . . . . . . . . . . . 15
⊢ (◡ ≤ ∩ ◡(𝐴 × 𝐴)) = (◡ ≤ ∩ (𝐴 × 𝐴)) |
111 | 108, 110 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ ◡( ≤ ∩ (𝐴 × 𝐴)) = (◡ ≤ ∩ (𝐴 × 𝐴)) |
112 | 111 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢
(ordTop‘◡( ≤ ∩
(𝐴 × 𝐴))) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) |
113 | 107, 112 | eqtr3di 2794 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴)))) |
114 | 113 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∩ 𝐴) ∈ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))))) |
115 | 87, 114 | raleqbidv 3327 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))))) |
116 | 79, 115 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
117 | | ralunb 4121 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
(ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
118 | 56, 116, 117 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑣 ∈ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
119 | | ralunb 4121 |
. . . . . . . 8
⊢
(∀𝑣 ∈
({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝐵} (𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
120 | 54, 118, 119 | sylanbrc 582 |
. . . . . . 7
⊢ (𝜑 → ∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
121 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) = (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) |
122 | 121 | fmpt 6966 |
. . . . . . 7
⊢
(∀𝑣 ∈
({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)):({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))⟶(ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
123 | 120, 122 | sylib 217 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)):({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))⟶(ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
124 | 123 | frnd 6592 |
. . . . 5
⊢ (𝜑 → ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
125 | 37, 124 | eqsstrd 3955 |
. . . 4
⊢ (𝜑 → (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
126 | | tgfiss 22049 |
. . . 4
⊢
(((ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
127 | 30, 125, 126 | syl2anc 583 |
. . 3
⊢ (𝜑 →
(topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
128 | 24, 127 | eqsstrd 3955 |
. 2
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴)
⊆ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
129 | 9, 128 | eqssd 3934 |
1
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) = ((ordTop‘ ≤ )
↾t 𝐴)) |