Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEW Structured version   Visualization version   GIF version

Theorem ordtrest2NEW 31775
Description: An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in , but in other sets like there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEW (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = ((ordTop‘ ) ↾t 𝐴))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑧   𝑧,   𝑧,𝐴   𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑧,𝐾

Proof of Theorem ordtrest2NEW
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtrest2NEW.2 . . . 4 (𝜑𝐾 ∈ Toset)
2 tospos 18053 . . . 4 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
3 posprs 17949 . . . 4 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
41, 2, 33syl 18 . . 3 (𝜑𝐾 ∈ Proset )
5 ordtrest2NEW.3 . . 3 (𝜑𝐴𝐵)
6 ordtNEW.b . . . 4 𝐵 = (Base‘𝐾)
7 ordtNEW.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
86, 7ordtrestNEW 31773 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))
94, 5, 8syl2anc 583 . 2 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))
10 eqid 2738 . . . . . . . 8 ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
11 eqid 2738 . . . . . . . 8 ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}) = ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})
126, 7, 10, 11ordtprsval 31770 . . . . . . 7 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))))
134, 12syl 17 . . . . . 6 (𝜑 → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))))
1413oveq1d 7270 . . . . 5 (𝜑 → ((ordTop‘ ) ↾t 𝐴) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))) ↾t 𝐴))
15 fibas 22035 . . . . . 6 (fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ∈ TopBases
166fvexi 6770 . . . . . . . 8 𝐵 ∈ V
1716a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
1817, 5ssexd 5243 . . . . . 6 (𝜑𝐴 ∈ V)
19 tgrest 22218 . . . . . 6 (((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) → (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))) ↾t 𝐴))
2015, 18, 19sylancr 586 . . . . 5 (𝜑 → (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))) ↾t 𝐴))
2114, 20eqtr4d 2781 . . . 4 (𝜑 → ((ordTop‘ ) ↾t 𝐴) = (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)))
22 firest 17060 . . . . 5 (fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴)) = ((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)
2322fveq2i 6759 . . . 4 (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴))
2421, 23eqtr4di 2797 . . 3 (𝜑 → ((ordTop‘ ) ↾t 𝐴) = (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))))
25 fvex 6769 . . . . . . . 8 (le‘𝐾) ∈ V
2625inex1 5236 . . . . . . 7 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
277, 26eqeltri 2835 . . . . . 6 ∈ V
2827inex1 5236 . . . . 5 ( ∩ (𝐴 × 𝐴)) ∈ V
29 ordttop 22259 . . . . 5 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3028, 29mp1i 13 . . . 4 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
316, 7, 10, 11ordtprsuni 31771 . . . . . . . . 9 (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))
324, 31syl 17 . . . . . . . 8 (𝜑𝐵 = ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))
3332, 17eqeltrrd 2840 . . . . . . 7 (𝜑 ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V)
34 uniexb 7592 . . . . . . 7 (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V ↔ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V)
3533, 34sylibr 233 . . . . . 6 (𝜑 → ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V)
36 restval 17054 . . . . . 6 ((({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)))
3735, 18, 36syl2anc 583 . . . . 5 (𝜑 → (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)))
38 sseqin2 4146 . . . . . . . . . . . 12 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
395, 38sylib 217 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) = 𝐴)
40 eqid 2738 . . . . . . . . . . . . . . 15 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
4140ordttopon 22252 . . . . . . . . . . . . . 14 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
4228, 41mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
436, 7prsssdm 31769 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
444, 5, 43syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
4544fveq2d 6760 . . . . . . . . . . . . 13 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
4642, 45eleqtrd 2841 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
47 toponmax 21983 . . . . . . . . . . . 12 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4846, 47syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4939, 48eqeltrd 2839 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
50 elsni 4575 . . . . . . . . . . . 12 (𝑣 ∈ {𝐵} → 𝑣 = 𝐵)
5150ineq1d 4142 . . . . . . . . . . 11 (𝑣 ∈ {𝐵} → (𝑣𝐴) = (𝐵𝐴))
5251eleq1d 2823 . . . . . . . . . 10 (𝑣 ∈ {𝐵} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (𝐵𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
5349, 52syl5ibrcom 246 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝐵} → (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
5453ralrimiv 3106 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ {𝐵} (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
55 ordtrest2NEW.4 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
566, 7, 1, 5, 55ordtrest2NEWlem 31774 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
57 eqid 2738 . . . . . . . . . . . 12 (ODual‘𝐾) = (ODual‘𝐾)
5857, 6odubas 17925 . . . . . . . . . . 11 𝐵 = (Base‘(ODual‘𝐾))
597cnveqi 5772 . . . . . . . . . . . 12 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
60 cnvin 6037 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
61 cnvxp 6049 . . . . . . . . . . . . . 14 (𝐵 × 𝐵) = (𝐵 × 𝐵)
6261ineq2i 4140 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
63 eqid 2738 . . . . . . . . . . . . . . 15 (le‘𝐾) = (le‘𝐾)
6457, 63oduleval 17923 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘(ODual‘𝐾))
6564ineq1i 4139 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
6660, 62, 653eqtri 2770 . . . . . . . . . . . 12 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
6759, 66eqtri 2766 . . . . . . . . . . 11 = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
6857odutos 31148 . . . . . . . . . . . 12 (𝐾 ∈ Toset → (ODual‘𝐾) ∈ Toset)
691, 68syl 17 . . . . . . . . . . 11 (𝜑 → (ODual‘𝐾) ∈ Toset)
70 vex 3426 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
71 vex 3426 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
7270, 71brcnv 5780 . . . . . . . . . . . . . . 15 (𝑦 𝑧𝑧 𝑦)
73 vex 3426 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
7471, 73brcnv 5780 . . . . . . . . . . . . . . 15 (𝑧 𝑥𝑥 𝑧)
7572, 74anbi12ci 627 . . . . . . . . . . . . . 14 ((𝑦 𝑧𝑧 𝑥) ↔ (𝑥 𝑧𝑧 𝑦))
7675rabbii 3397 . . . . . . . . . . . . 13 {𝑧𝐵 ∣ (𝑦 𝑧𝑧 𝑥)} = {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)}
7776, 55eqsstrid 3965 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑦 𝑧𝑧 𝑥)} ⊆ 𝐴)
7877ancom2s 646 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑥𝐴)) → {𝑧𝐵 ∣ (𝑦 𝑧𝑧 𝑥)} ⊆ 𝐴)
7958, 67, 69, 5, 78ordtrest2NEWlem 31774 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
80 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
8180, 71brcnv 5780 . . . . . . . . . . . . . . . . 17 (𝑤 𝑧𝑧 𝑤)
8281bicomi 223 . . . . . . . . . . . . . . . 16 (𝑧 𝑤𝑤 𝑧)
8382a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧 𝑤𝑤 𝑧))
8483notbid 317 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑧 𝑤 ↔ ¬ 𝑤 𝑧))
8584rabbidv 3404 . . . . . . . . . . . . 13 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑧 𝑤} = {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
8685mpteq2dv 5172 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}))
8786rneqd 5836 . . . . . . . . . . 11 (𝜑 → ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}) = ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}))
886ressprs 31143 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
894, 5, 88syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾s 𝐴) ∈ Proset )
90 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
91 eqid 2738 . . . . . . . . . . . . . . . 16 ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
9290, 91ordtcnvNEW 31772 . . . . . . . . . . . . . . 15 ((𝐾s 𝐴) ∈ Proset → (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
9389, 92syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
946, 7prsss 31768 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
954, 5, 94syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
96 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝐾s 𝐴) = (𝐾s 𝐴)
9796, 63ressle 17013 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
9818, 97syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
9996, 6ressbas2 16875 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
1005, 99syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = (Base‘(𝐾s 𝐴)))
101100sqxpeqd 5612 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 × 𝐴) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
10298, 101ineq12d 4144 . . . . . . . . . . . . . . . . 17 (𝜑 → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
10395, 102eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝜑 → ( ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
104103cnveqd 5773 . . . . . . . . . . . . . . 15 (𝜑( ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
105104fveq2d 6760 . . . . . . . . . . . . . 14 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
106103fveq2d 6760 . . . . . . . . . . . . . 14 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
10793, 105, 1063eqtr4d 2788 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘( ∩ (𝐴 × 𝐴))))
108 cnvin 6037 . . . . . . . . . . . . . . 15 ( ∩ (𝐴 × 𝐴)) = ( (𝐴 × 𝐴))
109 cnvxp 6049 . . . . . . . . . . . . . . . 16 (𝐴 × 𝐴) = (𝐴 × 𝐴)
110109ineq2i 4140 . . . . . . . . . . . . . . 15 ( (𝐴 × 𝐴)) = ( ∩ (𝐴 × 𝐴))
111108, 110eqtri 2766 . . . . . . . . . . . . . 14 ( ∩ (𝐴 × 𝐴)) = ( ∩ (𝐴 × 𝐴))
112111fveq2i 6759 . . . . . . . . . . . . 13 (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘( ∩ (𝐴 × 𝐴)))
113107, 112eqtr3di 2794 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘( ∩ (𝐴 × 𝐴))))
114113eleq2d 2824 . . . . . . . . . . 11 (𝜑 → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
11587, 114raleqbidv 3327 . . . . . . . . . 10 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
11679, 115mpbird 256 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
117 ralunb 4121 . . . . . . . . 9 (∀𝑣 ∈ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
11856, 116, 117sylanbrc 582 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
119 ralunb 4121 . . . . . . . 8 (∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝐵} (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
12054, 118, 119sylanbrc 582 . . . . . . 7 (𝜑 → ∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
121 eqid 2738 . . . . . . . 8 (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)) = (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴))
122121fmpt 6966 . . . . . . 7 (∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)):({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))⟶(ordTop‘( ∩ (𝐴 × 𝐴))))
123120, 122sylib 217 . . . . . 6 (𝜑 → (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)):({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))⟶(ordTop‘( ∩ (𝐴 × 𝐴))))
124123frnd 6592 . . . . 5 (𝜑 → ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
12537, 124eqsstrd 3955 . . . 4 (𝜑 → (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
126 tgfiss 22049 . . . 4 (((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
12730, 125, 126syl2anc 583 . . 3 (𝜑 → (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
12824, 127eqsstrd 3955 . 2 (𝜑 → ((ordTop‘ ) ↾t 𝐴) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
1299, 128eqssd 3934 1 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = ((ordTop‘ ) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cun 3881  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  ficfi 9099  Basecbs 16840  s cress 16867  lecple 16895  t crest 17048  topGenctg 17065  ordTopcordt 17127  ODualcodu 17920   Proset cproset 17926  Posetcpo 17940  Tosetctos 18049  Topctop 21950  TopOnctopon 21967  TopBasesctb 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-ple 16908  df-rest 17050  df-topgen 17071  df-ordt 17129  df-odu 17921  df-proset 17928  df-poset 17946  df-toset 18050  df-top 21951  df-topon 21968  df-bases 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator