Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prsssdm | Structured version Visualization version GIF version |
Description: Domain of a subproset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
Ref | Expression |
---|---|
ordtNEW.b | ⊢ 𝐵 = (Base‘𝐾) |
ordtNEW.l | ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
prsssdm | ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtNEW.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ordtNEW.l | . . . 4 ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) | |
3 | 1, 2 | prsss 31768 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
4 | 3 | dmeqd 5803 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
5 | 1 | ressprs 31143 | . . . 4 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) |
6 | eqid 2738 | . . . . 5 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
7 | eqid 2738 | . . . . 5 ⊢ ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
8 | 6, 7 | prsdm 31766 | . . . 4 ⊢ ((𝐾 ↾s 𝐴) ∈ Proset → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
10 | eqid 2738 | . . . . . . . . 9 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
11 | 10, 1 | ressbas2 16875 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
12 | fvex 6769 | . . . . . . . 8 ⊢ (Base‘(𝐾 ↾s 𝐴)) ∈ V | |
13 | 11, 12 | eqeltrdi 2847 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
14 | eqid 2738 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
15 | 10, 14 | ressle 17013 | . . . . . . 7 ⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
18 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
19 | 18 | sqxpeqd 5612 | . . . . 5 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
20 | 17, 19 | ineq12d 4144 | . . . 4 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
21 | 20 | dmeqd 5803 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
22 | 9, 21, 18 | 3eqtr4d 2788 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴) |
23 | 4, 22 | eqtrd 2778 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 lecple 16895 Proset cproset 17926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-ple 16908 df-proset 17928 |
This theorem is referenced by: ordtrest2NEWlem 31774 ordtrest2NEW 31775 |
Copyright terms: Public domain | W3C validator |