![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prsssdm | Structured version Visualization version GIF version |
Description: Domain of a subproset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
Ref | Expression |
---|---|
ordtNEW.b | ⊢ 𝐵 = (Base‘𝐾) |
ordtNEW.l | ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
prsssdm | ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtNEW.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ordtNEW.l | . . . 4 ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) | |
3 | 1, 2 | prsss 30732 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
4 | 3 | dmeqd 5652 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
5 | 1 | ressprs 30286 | . . . 4 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) |
6 | eqid 2793 | . . . . 5 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
7 | eqid 2793 | . . . . 5 ⊢ ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
8 | 6, 7 | prsdm 30730 | . . . 4 ⊢ ((𝐾 ↾s 𝐴) ∈ Proset → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
10 | eqid 2793 | . . . . . . . . 9 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
11 | 10, 1 | ressbas2 16372 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
12 | fvex 6543 | . . . . . . . 8 ⊢ (Base‘(𝐾 ↾s 𝐴)) ∈ V | |
13 | 11, 12 | syl6eqel 2889 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
14 | eqid 2793 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
15 | 10, 14 | ressle 16489 | . . . . . . 7 ⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
17 | 16 | adantl 482 | . . . . 5 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
18 | 11 | adantl 482 | . . . . . 6 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
19 | 18 | sqxpeqd 5467 | . . . . 5 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
20 | 17, 19 | ineq12d 4105 | . . . 4 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
21 | 20 | dmeqd 5652 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
22 | 9, 21, 18 | 3eqtr4d 2839 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴) |
23 | 4, 22 | eqtrd 2829 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 Vcvv 3432 ∩ cin 3853 ⊆ wss 3854 × cxp 5433 dom cdm 5435 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 ↾s cress 16301 lecple 16389 Proset cproset 17353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-dec 11937 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-ple 16402 df-proset 17355 |
This theorem is referenced by: ordtrest2NEWlem 30738 ordtrest2NEW 30739 |
Copyright terms: Public domain | W3C validator |