MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i2 Structured version   Visualization version   GIF version

Theorem fin2i2 10005
Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin2i2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)

Proof of Theorem fin2i2
Dummy variables 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . 3 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
2 simpll 763 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐴 ∈ FinII)
3 ssrab2 4009 . . . . . 6 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴
43a1i 11 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴)
5 simprl 767 . . . . . 6 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵 ≠ ∅)
6 fin23lem7 10003 . . . . . 6 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅)
72, 1, 5, 6syl3anc 1369 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅)
8 sorpsscmpl 7565 . . . . . 6 ( [] Or 𝐵 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
98ad2antll 725 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
10 fin2i 9982 . . . . 5 (((𝐴 ∈ FinII ∧ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴) ∧ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
112, 4, 7, 9, 10syl22anc 835 . . . 4 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
12 sorpssuni 7563 . . . . 5 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}))
139, 12syl 17 . . . 4 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}))
1411, 13mpbird 256 . . 3 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → ∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛)
15 psseq2 4019 . . . 4 (𝑧 = (𝐴𝑚) → (𝑤𝑧𝑤 ⊊ (𝐴𝑚)))
16 psseq2 4019 . . . 4 (𝑛 = (𝐴𝑤) → (𝑚𝑛𝑚 ⊊ (𝐴𝑤)))
17 pssdifcom2 4418 . . . 4 ((𝑚𝐴𝑤𝐴) → (𝑤 ⊊ (𝐴𝑚) ↔ 𝑚 ⊊ (𝐴𝑤)))
1815, 16, 17fin23lem11 10004 . . 3 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧))
191, 14, 18sylc 65 . 2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧)
20 sorpssint 7564 . . 3 ( [] Or 𝐵 → (∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵))
2120ad2antll 725 . 2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → (∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵))
2219, 21mpbid 231 1 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cdif 3880  wss 3883  wpss 3884  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876   Or wor 5493   [] crpss 7553  FinIIcfin2 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-rpss 7554  df-fin2 9973
This theorem is referenced by:  isfin2-2  10006  fin23lem40  10038  fin2so  35691
  Copyright terms: Public domain W3C validator