| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4878 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7695 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3517 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: uniex 7697 uniexd 7698 abnexg 7712 uniexb 7720 pwexr 7721 ssonuni 7736 ssonprc 7743 dmexg 7857 rnexg 7858 undefval 8232 onovuni 8288 tz7.44lem1 8350 tz7.44-3 8353 disjen 9075 domss2 9077 fival 9339 fipwuni 9353 supexd 9380 cantnflem1 9618 dfac8clem 9961 onssnum 9969 dfac12lem1 10073 dfac12lem2 10074 fin1a2lem12 10340 hsmexlem1 10355 wrdexb 14466 restid 17372 prdsbas 17396 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 sscpwex 17757 pmtrfv 19366 istopon 22832 tgval 22875 eltg2 22878 tgss2 22907 neiptoptop 23051 restin 23086 restntr 23102 cnprest2 23210 pnrmopn 23263 cnrmnrm 23281 cmpsublem 23319 cmpsub 23320 cmpcld 23322 hausmapdom 23420 isref 23429 locfindis 23450 txbasex 23486 dfac14lem 23537 xkopt 23575 xkopjcn 23576 qtopval2 23616 elqtop 23617 fbssfi 23757 ptcmplem2 23973 cnextfval 23982 tuslem 24187 madeval 27797 pliguhgr 30465 acunirnmpt2 32634 acunirnmpt2f 32635 ist0cld 33816 hasheuni 34068 insiga 34120 sigagenval 34123 omsval 34277 omssubadd 34284 sibfof 34324 sitmcl 34335 kur14 35196 cvmscld 35253 fobigcup 35881 hfuni 36165 isfne 36320 isfne4b 36322 fnemeet1 36347 tailfval 36353 bj-restuni2 37079 pibt2 37398 kelac2 43047 cnfex 45015 unidmex 45037 pwpwuni 45044 salgenval 46312 intsaluni 46320 salgenn0 46322 caragenunidm 46499 afv2ex 47208 iscnrm3rlem3 48923 |
| Copyright terms: Public domain | W3C validator |