| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4894 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2819 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7733 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 |
| This theorem is referenced by: uniex 7735 uniexd 7736 abnexg 7750 uniexb 7758 pwexr 7759 ssonuni 7774 ssonprc 7781 dmexg 7897 rnexg 7898 undefval 8275 onovuni 8356 tz7.44lem1 8419 tz7.44-3 8422 disjen 9148 domss2 9150 fival 9424 fipwuni 9438 supexd 9465 cantnflem1 9703 dfac8clem 10046 onssnum 10054 dfac12lem1 10158 dfac12lem2 10159 fin1a2lem12 10425 hsmexlem1 10440 wrdexb 14543 restid 17447 prdsbas 17471 prdsplusg 17472 prdsmulr 17473 prdsvsca 17474 prdshom 17481 sscpwex 17828 pmtrfv 19433 istopon 22850 tgval 22893 eltg2 22896 tgss2 22925 neiptoptop 23069 restin 23104 restntr 23120 cnprest2 23228 pnrmopn 23281 cnrmnrm 23299 cmpsublem 23337 cmpsub 23338 cmpcld 23340 hausmapdom 23438 isref 23447 locfindis 23468 txbasex 23504 dfac14lem 23555 xkopt 23593 xkopjcn 23594 qtopval2 23634 elqtop 23635 fbssfi 23775 ptcmplem2 23991 cnextfval 24000 tuslem 24205 madeval 27812 pliguhgr 30467 acunirnmpt2 32638 acunirnmpt2f 32639 ist0cld 33864 hasheuni 34116 insiga 34168 sigagenval 34171 omsval 34325 omssubadd 34332 sibfof 34372 sitmcl 34383 kur14 35238 cvmscld 35295 fobigcup 35918 hfuni 36202 isfne 36357 isfne4b 36359 fnemeet1 36384 tailfval 36390 bj-restuni2 37116 pibt2 37435 imaexALTV 38348 kelac2 43089 cnfex 45052 unidmex 45074 pwpwuni 45081 salgenval 46350 intsaluni 46358 salgenn0 46360 caragenunidm 46537 afv2ex 47243 iscnrm3rlem3 48916 |
| Copyright terms: Public domain | W3C validator |