Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4847 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7570 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3495 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: uniex 7572 uniexd 7573 abnexg 7584 uniexb 7592 pwexr 7593 ssonuni 7607 ssonprc 7614 dmexg 7724 rnexg 7725 undefval 8063 onovuni 8144 tz7.44lem1 8207 tz7.44-3 8210 en1unielOLD 8773 disjen 8870 domss2 8872 fival 9101 fipwuni 9115 supexd 9142 cantnflem1 9377 dfac8clem 9719 onssnum 9727 dfac12lem1 9830 dfac12lem2 9831 fin1a2lem12 10098 hsmexlem1 10113 wrdexb 14156 restid 17061 prdsbas 17085 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 sscpwex 17444 pmtrfv 18975 istopon 21969 tgval 22013 eltg2 22016 tgss2 22045 neiptoptop 22190 restin 22225 restntr 22241 cnprest2 22349 pnrmopn 22402 cnrmnrm 22420 cmpsublem 22458 cmpsub 22459 cmpcld 22461 hausmapdom 22559 isref 22568 locfindis 22589 txbasex 22625 dfac14lem 22676 xkopt 22714 xkopjcn 22715 qtopval2 22755 elqtop 22756 fbssfi 22896 ptcmplem2 23112 cnextfval 23121 tuslem 23326 tuslemOLD 23327 pliguhgr 28749 acunirnmpt2 30899 acunirnmpt2f 30900 ist0cld 31685 hasheuni 31953 insiga 32005 sigagenval 32008 omsval 32160 omssubadd 32167 sibfof 32207 sitmcl 32218 kur14 33078 cvmscld 33135 madeval 33963 fobigcup 34129 hfuni 34413 isfne 34455 isfne4b 34457 fnemeet1 34482 tailfval 34488 bj-restuni2 35196 pibt2 35515 imaexALTV 36392 kelac2 40806 cnfex 42460 unidmex 42487 pwpwuni 42494 salgenval 43752 intsaluni 43758 salgenn0 43760 caragenunidm 43936 afv2ex 44593 iscnrm3rlem3 46124 |
Copyright terms: Public domain | W3C validator |