Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4850 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7592 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3505 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: uniex 7594 uniexd 7595 abnexg 7606 uniexb 7614 pwexr 7615 ssonuni 7630 ssonprc 7637 dmexg 7750 rnexg 7751 undefval 8092 onovuni 8173 tz7.44lem1 8236 tz7.44-3 8239 en1unielOLD 8819 disjen 8921 domss2 8923 fival 9171 fipwuni 9185 supexd 9212 cantnflem1 9447 dfac8clem 9788 onssnum 9796 dfac12lem1 9899 dfac12lem2 9900 fin1a2lem12 10167 hsmexlem1 10182 wrdexb 14228 restid 17144 prdsbas 17168 prdsplusg 17169 prdsmulr 17170 prdsvsca 17171 prdshom 17178 sscpwex 17527 pmtrfv 19060 istopon 22061 tgval 22105 eltg2 22108 tgss2 22137 neiptoptop 22282 restin 22317 restntr 22333 cnprest2 22441 pnrmopn 22494 cnrmnrm 22512 cmpsublem 22550 cmpsub 22551 cmpcld 22553 hausmapdom 22651 isref 22660 locfindis 22681 txbasex 22717 dfac14lem 22768 xkopt 22806 xkopjcn 22807 qtopval2 22847 elqtop 22848 fbssfi 22988 ptcmplem2 23204 cnextfval 23213 tuslem 23418 tuslemOLD 23419 pliguhgr 28848 acunirnmpt2 30997 acunirnmpt2f 30998 ist0cld 31783 hasheuni 32053 insiga 32105 sigagenval 32108 omsval 32260 omssubadd 32267 sibfof 32307 sitmcl 32318 kur14 33178 cvmscld 33235 madeval 34036 fobigcup 34202 hfuni 34486 isfne 34528 isfne4b 34530 fnemeet1 34555 tailfval 34561 bj-restuni2 35269 pibt2 35588 imaexALTV 36465 kelac2 40890 cnfex 42571 unidmex 42598 pwpwuni 42605 salgenval 43862 intsaluni 43868 salgenn0 43870 caragenunidm 44046 afv2ex 44706 iscnrm3rlem3 46236 |
Copyright terms: Public domain | W3C validator |