![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7774 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: uniex 7776 uniexd 7777 abnexg 7791 uniexb 7799 pwexr 7800 ssonuni 7815 ssonprc 7823 dmexg 7941 rnexg 7942 undefval 8317 onovuni 8398 tz7.44lem1 8461 tz7.44-3 8464 en1unielOLD 9094 disjen 9200 domss2 9202 fival 9481 fipwuni 9495 supexd 9522 cantnflem1 9758 dfac8clem 10101 onssnum 10109 dfac12lem1 10213 dfac12lem2 10214 fin1a2lem12 10480 hsmexlem1 10495 wrdexb 14573 restid 17493 prdsbas 17517 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 sscpwex 17876 pmtrfv 19494 istopon 22939 tgval 22983 eltg2 22986 tgss2 23015 neiptoptop 23160 restin 23195 restntr 23211 cnprest2 23319 pnrmopn 23372 cnrmnrm 23390 cmpsublem 23428 cmpsub 23429 cmpcld 23431 hausmapdom 23529 isref 23538 locfindis 23559 txbasex 23595 dfac14lem 23646 xkopt 23684 xkopjcn 23685 qtopval2 23725 elqtop 23726 fbssfi 23866 ptcmplem2 24082 cnextfval 24091 tuslem 24296 tuslemOLD 24297 madeval 27909 pliguhgr 30518 acunirnmpt2 32678 acunirnmpt2f 32679 ist0cld 33779 hasheuni 34049 insiga 34101 sigagenval 34104 omsval 34258 omssubadd 34265 sibfof 34305 sitmcl 34316 kur14 35184 cvmscld 35241 fobigcup 35864 hfuni 36148 isfne 36305 isfne4b 36307 fnemeet1 36332 tailfval 36338 bj-restuni2 37064 pibt2 37383 imaexALTV 38286 kelac2 43022 cnfex 44928 unidmex 44952 pwpwuni 44959 salgenval 46242 intsaluni 46250 salgenn0 46252 caragenunidm 46429 afv2ex 47129 iscnrm3rlem3 48622 |
Copyright terms: Public domain | W3C validator |