Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4859 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2822 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7630 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3514 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cuni 4848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 df-ss 3913 df-uni 4849 |
This theorem is referenced by: uniex 7632 uniexd 7633 abnexg 7644 uniexb 7652 pwexr 7653 ssonuni 7668 ssonprc 7675 dmexg 7793 rnexg 7794 undefval 8137 onovuni 8218 tz7.44lem1 8281 tz7.44-3 8284 en1unielOLD 8869 disjen 8974 domss2 8976 fival 9239 fipwuni 9253 supexd 9280 cantnflem1 9515 dfac8clem 9858 onssnum 9866 dfac12lem1 9969 dfac12lem2 9970 fin1a2lem12 10237 hsmexlem1 10252 wrdexb 14297 restid 17211 prdsbas 17235 prdsplusg 17236 prdsmulr 17237 prdsvsca 17238 prdshom 17245 sscpwex 17594 pmtrfv 19127 istopon 22132 tgval 22176 eltg2 22179 tgss2 22208 neiptoptop 22353 restin 22388 restntr 22404 cnprest2 22512 pnrmopn 22565 cnrmnrm 22583 cmpsublem 22621 cmpsub 22622 cmpcld 22624 hausmapdom 22722 isref 22731 locfindis 22752 txbasex 22788 dfac14lem 22839 xkopt 22877 xkopjcn 22878 qtopval2 22918 elqtop 22919 fbssfi 23059 ptcmplem2 23275 cnextfval 23284 tuslem 23489 tuslemOLD 23490 pliguhgr 28956 acunirnmpt2 31105 acunirnmpt2f 31106 ist0cld 31889 hasheuni 32159 insiga 32211 sigagenval 32214 omsval 32366 omssubadd 32373 sibfof 32413 sitmcl 32424 kur14 33284 cvmscld 33341 madeval 34097 fobigcup 34263 hfuni 34547 isfne 34589 isfne4b 34591 fnemeet1 34616 tailfval 34622 bj-restuni2 35329 pibt2 35648 imaexALTV 36555 kelac2 41101 cnfex 42799 unidmex 42826 pwpwuni 42833 salgenval 44106 intsaluni 44112 salgenn0 44114 caragenunidm 44291 afv2ex 44965 iscnrm3rlem3 46495 |
Copyright terms: Public domain | W3C validator |