![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4918 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7725 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3556 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cuni 4907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-uni 4908 |
This theorem is referenced by: uniex 7727 uniexd 7728 abnexg 7739 uniexb 7747 pwexr 7748 ssonuni 7763 ssonprc 7771 dmexg 7890 rnexg 7891 undefval 8257 onovuni 8338 tz7.44lem1 8401 tz7.44-3 8404 en1unielOLD 9025 disjen 9130 domss2 9132 fival 9403 fipwuni 9417 supexd 9444 cantnflem1 9680 dfac8clem 10023 onssnum 10031 dfac12lem1 10134 dfac12lem2 10135 fin1a2lem12 10402 hsmexlem1 10417 wrdexb 14471 restid 17375 prdsbas 17399 prdsplusg 17400 prdsmulr 17401 prdsvsca 17402 prdshom 17409 sscpwex 17758 pmtrfv 19314 istopon 22405 tgval 22449 eltg2 22452 tgss2 22481 neiptoptop 22626 restin 22661 restntr 22677 cnprest2 22785 pnrmopn 22838 cnrmnrm 22856 cmpsublem 22894 cmpsub 22895 cmpcld 22897 hausmapdom 22995 isref 23004 locfindis 23025 txbasex 23061 dfac14lem 23112 xkopt 23150 xkopjcn 23151 qtopval2 23191 elqtop 23192 fbssfi 23332 ptcmplem2 23548 cnextfval 23557 tuslem 23762 tuslemOLD 23763 madeval 27336 pliguhgr 29726 acunirnmpt2 31872 acunirnmpt2f 31873 ist0cld 32801 hasheuni 33071 insiga 33123 sigagenval 33126 omsval 33280 omssubadd 33287 sibfof 33327 sitmcl 33338 kur14 34195 cvmscld 34252 fobigcup 34860 hfuni 35144 isfne 35212 isfne4b 35214 fnemeet1 35239 tailfval 35245 bj-restuni2 35967 pibt2 36286 imaexALTV 37187 kelac2 41792 cnfex 43697 unidmex 43722 pwpwuni 43729 salgenval 45023 intsaluni 45031 salgenn0 45033 caragenunidm 45210 afv2ex 45908 iscnrm3rlem3 47528 |
Copyright terms: Public domain | W3C validator |