| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4867 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7672 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: uniex 7674 uniexd 7675 abnexg 7689 uniexb 7697 pwexr 7698 ssonuni 7713 ssonprc 7720 dmexg 7831 rnexg 7832 undefval 8206 onovuni 8262 tz7.44lem1 8324 tz7.44-3 8327 disjen 9047 domss2 9049 fival 9296 fipwuni 9310 supexd 9337 cantnflem1 9579 dfac8clem 9923 onssnum 9931 dfac12lem1 10035 dfac12lem2 10036 fin1a2lem12 10302 hsmexlem1 10317 wrdexb 14432 restid 17337 prdsbas 17361 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 sscpwex 17722 pmtrfv 19364 istopon 22827 tgval 22870 eltg2 22873 tgss2 22902 neiptoptop 23046 restin 23081 restntr 23097 cnprest2 23205 pnrmopn 23258 cnrmnrm 23276 cmpsublem 23314 cmpsub 23315 cmpcld 23317 hausmapdom 23415 isref 23424 locfindis 23445 txbasex 23481 dfac14lem 23532 xkopt 23570 xkopjcn 23571 qtopval2 23611 elqtop 23612 fbssfi 23752 ptcmplem2 23968 cnextfval 23977 tuslem 24181 madeval 27793 pliguhgr 30466 acunirnmpt2 32642 acunirnmpt2f 32643 ist0cld 33846 hasheuni 34098 insiga 34150 sigagenval 34153 omsval 34306 omssubadd 34313 sibfof 34353 sitmcl 34364 kur14 35260 cvmscld 35317 fobigcup 35942 hfuni 36228 isfne 36383 isfne4b 36385 fnemeet1 36410 tailfval 36416 bj-restuni2 37142 pibt2 37461 kelac2 43157 cnfex 45124 unidmex 45146 pwpwuni 45153 salgenval 46418 intsaluni 46426 salgenn0 46428 caragenunidm 46605 afv2ex 47313 iscnrm3rlem3 49041 |
| Copyright terms: Public domain | W3C validator |