| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4869 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7675 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 |
| This theorem is referenced by: uniex 7677 uniexd 7678 abnexg 7692 uniexb 7700 pwexr 7701 ssonuni 7716 ssonprc 7723 dmexg 7834 rnexg 7835 undefval 8209 onovuni 8265 tz7.44lem1 8327 tz7.44-3 8330 disjen 9051 domss2 9053 fival 9302 fipwuni 9316 supexd 9343 cantnflem1 9585 dfac8clem 9926 onssnum 9934 dfac12lem1 10038 dfac12lem2 10039 fin1a2lem12 10305 hsmexlem1 10320 wrdexb 14432 restid 17337 prdsbas 17361 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 sscpwex 17722 pmtrfv 19331 istopon 22797 tgval 22840 eltg2 22843 tgss2 22872 neiptoptop 23016 restin 23051 restntr 23067 cnprest2 23175 pnrmopn 23228 cnrmnrm 23246 cmpsublem 23284 cmpsub 23285 cmpcld 23287 hausmapdom 23385 isref 23394 locfindis 23415 txbasex 23451 dfac14lem 23502 xkopt 23540 xkopjcn 23541 qtopval2 23581 elqtop 23582 fbssfi 23722 ptcmplem2 23938 cnextfval 23947 tuslem 24152 madeval 27764 pliguhgr 30434 acunirnmpt2 32611 acunirnmpt2f 32612 ist0cld 33816 hasheuni 34068 insiga 34120 sigagenval 34123 omsval 34277 omssubadd 34284 sibfof 34324 sitmcl 34335 kur14 35209 cvmscld 35266 fobigcup 35894 hfuni 36178 isfne 36333 isfne4b 36335 fnemeet1 36360 tailfval 36366 bj-restuni2 37092 pibt2 37411 kelac2 43058 cnfex 45026 unidmex 45048 pwpwuni 45055 salgenval 46322 intsaluni 46330 salgenn0 46332 caragenunidm 46509 afv2ex 47218 iscnrm3rlem3 48946 |
| Copyright terms: Public domain | W3C validator |