![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4920 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2819 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7729 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 |
This theorem is referenced by: uniex 7731 uniexd 7732 abnexg 7743 uniexb 7751 pwexr 7752 ssonuni 7767 ssonprc 7775 dmexg 7894 rnexg 7895 undefval 8261 onovuni 8342 tz7.44lem1 8405 tz7.44-3 8408 en1unielOLD 9029 disjen 9134 domss2 9136 fival 9407 fipwuni 9421 supexd 9448 cantnflem1 9684 dfac8clem 10027 onssnum 10035 dfac12lem1 10138 dfac12lem2 10139 fin1a2lem12 10406 hsmexlem1 10421 wrdexb 14475 restid 17379 prdsbas 17403 prdsplusg 17404 prdsmulr 17405 prdsvsca 17406 prdshom 17413 sscpwex 17762 pmtrfv 19320 istopon 22414 tgval 22458 eltg2 22461 tgss2 22490 neiptoptop 22635 restin 22670 restntr 22686 cnprest2 22794 pnrmopn 22847 cnrmnrm 22865 cmpsublem 22903 cmpsub 22904 cmpcld 22906 hausmapdom 23004 isref 23013 locfindis 23034 txbasex 23070 dfac14lem 23121 xkopt 23159 xkopjcn 23160 qtopval2 23200 elqtop 23201 fbssfi 23341 ptcmplem2 23557 cnextfval 23566 tuslem 23771 tuslemOLD 23772 madeval 27348 pliguhgr 29770 acunirnmpt2 31916 acunirnmpt2f 31917 ist0cld 32844 hasheuni 33114 insiga 33166 sigagenval 33169 omsval 33323 omssubadd 33330 sibfof 33370 sitmcl 33381 kur14 34238 cvmscld 34295 fobigcup 34903 hfuni 35187 isfne 35272 isfne4b 35274 fnemeet1 35299 tailfval 35305 bj-restuni2 36027 pibt2 36346 imaexALTV 37247 kelac2 41855 cnfex 43760 unidmex 43785 pwpwuni 43792 salgenval 45085 intsaluni 45093 salgenn0 45095 caragenunidm 45272 afv2ex 45970 iscnrm3rlem3 47623 |
Copyright terms: Public domain | W3C validator |