| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4882 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7715 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 |
| This theorem is referenced by: uniex 7717 uniexd 7718 abnexg 7732 uniexb 7740 pwexr 7741 ssonuni 7756 ssonprc 7763 dmexg 7877 rnexg 7878 undefval 8255 onovuni 8311 tz7.44lem1 8373 tz7.44-3 8376 disjen 9098 domss2 9100 fival 9363 fipwuni 9377 supexd 9404 cantnflem1 9642 dfac8clem 9985 onssnum 9993 dfac12lem1 10097 dfac12lem2 10098 fin1a2lem12 10364 hsmexlem1 10379 wrdexb 14490 restid 17396 prdsbas 17420 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 sscpwex 17777 pmtrfv 19382 istopon 22799 tgval 22842 eltg2 22845 tgss2 22874 neiptoptop 23018 restin 23053 restntr 23069 cnprest2 23177 pnrmopn 23230 cnrmnrm 23248 cmpsublem 23286 cmpsub 23287 cmpcld 23289 hausmapdom 23387 isref 23396 locfindis 23417 txbasex 23453 dfac14lem 23504 xkopt 23542 xkopjcn 23543 qtopval2 23583 elqtop 23584 fbssfi 23724 ptcmplem2 23940 cnextfval 23949 tuslem 24154 madeval 27760 pliguhgr 30415 acunirnmpt2 32584 acunirnmpt2f 32585 ist0cld 33823 hasheuni 34075 insiga 34127 sigagenval 34130 omsval 34284 omssubadd 34291 sibfof 34331 sitmcl 34342 kur14 35203 cvmscld 35260 fobigcup 35888 hfuni 36172 isfne 36327 isfne4b 36329 fnemeet1 36354 tailfval 36360 bj-restuni2 37086 pibt2 37405 kelac2 43054 cnfex 45022 unidmex 45044 pwpwuni 45051 salgenval 46319 intsaluni 46327 salgenn0 46329 caragenunidm 46506 afv2ex 47215 iscnrm3rlem3 48930 |
| Copyright terms: Public domain | W3C validator |