![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4923 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7758 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3554 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 |
This theorem is referenced by: uniex 7760 uniexd 7761 abnexg 7775 uniexb 7783 pwexr 7784 ssonuni 7799 ssonprc 7807 dmexg 7924 rnexg 7925 undefval 8300 onovuni 8381 tz7.44lem1 8444 tz7.44-3 8447 disjen 9173 domss2 9175 fival 9450 fipwuni 9464 supexd 9491 cantnflem1 9727 dfac8clem 10070 onssnum 10078 dfac12lem1 10182 dfac12lem2 10183 fin1a2lem12 10449 hsmexlem1 10464 wrdexb 14560 restid 17480 prdsbas 17504 prdsplusg 17505 prdsmulr 17506 prdsvsca 17507 prdshom 17514 sscpwex 17863 pmtrfv 19485 istopon 22934 tgval 22978 eltg2 22981 tgss2 23010 neiptoptop 23155 restin 23190 restntr 23206 cnprest2 23314 pnrmopn 23367 cnrmnrm 23385 cmpsublem 23423 cmpsub 23424 cmpcld 23426 hausmapdom 23524 isref 23533 locfindis 23554 txbasex 23590 dfac14lem 23641 xkopt 23679 xkopjcn 23680 qtopval2 23720 elqtop 23721 fbssfi 23861 ptcmplem2 24077 cnextfval 24086 tuslem 24291 tuslemOLD 24292 madeval 27906 pliguhgr 30515 acunirnmpt2 32677 acunirnmpt2f 32678 ist0cld 33794 hasheuni 34066 insiga 34118 sigagenval 34121 omsval 34275 omssubadd 34282 sibfof 34322 sitmcl 34333 kur14 35201 cvmscld 35258 fobigcup 35882 hfuni 36166 isfne 36322 isfne4b 36324 fnemeet1 36349 tailfval 36355 bj-restuni2 37081 pibt2 37400 imaexALTV 38312 kelac2 43054 cnfex 44966 unidmex 44990 pwpwuni 44997 salgenval 46277 intsaluni 46285 salgenn0 46287 caragenunidm 46464 afv2ex 47164 iscnrm3rlem3 48739 |
Copyright terms: Public domain | W3C validator |