| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4878 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7695 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3517 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: uniex 7697 uniexd 7698 abnexg 7712 uniexb 7720 pwexr 7721 ssonuni 7736 ssonprc 7743 dmexg 7857 rnexg 7858 undefval 8232 onovuni 8288 tz7.44lem1 8350 tz7.44-3 8353 disjen 9075 domss2 9077 fival 9339 fipwuni 9353 supexd 9380 cantnflem1 9620 dfac8clem 9963 onssnum 9971 dfac12lem1 10075 dfac12lem2 10076 fin1a2lem12 10342 hsmexlem1 10357 wrdexb 14468 restid 17373 prdsbas 17397 prdsplusg 17398 prdsmulr 17399 prdsvsca 17400 prdshom 17407 sscpwex 17758 pmtrfv 19367 istopon 22833 tgval 22876 eltg2 22879 tgss2 22908 neiptoptop 23052 restin 23087 restntr 23103 cnprest2 23211 pnrmopn 23264 cnrmnrm 23282 cmpsublem 23320 cmpsub 23321 cmpcld 23323 hausmapdom 23421 isref 23430 locfindis 23451 txbasex 23487 dfac14lem 23538 xkopt 23576 xkopjcn 23577 qtopval2 23617 elqtop 23618 fbssfi 23758 ptcmplem2 23974 cnextfval 23983 tuslem 24188 madeval 27798 pliguhgr 30466 acunirnmpt2 32635 acunirnmpt2f 32636 ist0cld 33817 hasheuni 34069 insiga 34121 sigagenval 34124 omsval 34278 omssubadd 34285 sibfof 34325 sitmcl 34336 kur14 35197 cvmscld 35254 fobigcup 35882 hfuni 36166 isfne 36321 isfne4b 36323 fnemeet1 36348 tailfval 36354 bj-restuni2 37080 pibt2 37399 kelac2 43048 cnfex 45016 unidmex 45038 pwpwuni 45045 salgenval 46313 intsaluni 46321 salgenn0 46323 caragenunidm 46500 afv2ex 47209 iscnrm3rlem3 48924 |
| Copyright terms: Public domain | W3C validator |