![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4919 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vuniex 7731 | . 2 ⊢ ∪ 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3556 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 |
This theorem is referenced by: uniex 7733 uniexd 7734 abnexg 7745 uniexb 7753 pwexr 7754 ssonuni 7769 ssonprc 7777 dmexg 7896 rnexg 7897 undefval 8263 onovuni 8344 tz7.44lem1 8407 tz7.44-3 8410 en1unielOLD 9031 disjen 9136 domss2 9138 fival 9409 fipwuni 9423 supexd 9450 cantnflem1 9686 dfac8clem 10029 onssnum 10037 dfac12lem1 10140 dfac12lem2 10141 fin1a2lem12 10408 hsmexlem1 10423 wrdexb 14479 restid 17383 prdsbas 17407 prdsplusg 17408 prdsmulr 17409 prdsvsca 17410 prdshom 17417 sscpwex 17766 pmtrfv 19361 istopon 22634 tgval 22678 eltg2 22681 tgss2 22710 neiptoptop 22855 restin 22890 restntr 22906 cnprest2 23014 pnrmopn 23067 cnrmnrm 23085 cmpsublem 23123 cmpsub 23124 cmpcld 23126 hausmapdom 23224 isref 23233 locfindis 23254 txbasex 23290 dfac14lem 23341 xkopt 23379 xkopjcn 23380 qtopval2 23420 elqtop 23421 fbssfi 23561 ptcmplem2 23777 cnextfval 23786 tuslem 23991 tuslemOLD 23992 madeval 27572 pliguhgr 29994 acunirnmpt2 32140 acunirnmpt2f 32141 ist0cld 33099 hasheuni 33369 insiga 33421 sigagenval 33424 omsval 33578 omssubadd 33585 sibfof 33625 sitmcl 33636 kur14 34493 cvmscld 34550 fobigcup 35164 hfuni 35448 isfne 35527 isfne4b 35529 fnemeet1 35554 tailfval 35560 bj-restuni2 36282 pibt2 36601 imaexALTV 37502 kelac2 42109 cnfex 44014 unidmex 44039 pwpwuni 44046 salgenval 45336 intsaluni 45344 salgenn0 45346 caragenunidm 45523 afv2ex 46221 iscnrm3rlem3 47663 |
Copyright terms: Public domain | W3C validator |