| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexg | Structured version Visualization version GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4885 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2814 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vuniex 7718 | . 2 ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: uniex 7720 uniexd 7721 abnexg 7735 uniexb 7743 pwexr 7744 ssonuni 7759 ssonprc 7766 dmexg 7880 rnexg 7881 undefval 8258 onovuni 8314 tz7.44lem1 8376 tz7.44-3 8379 disjen 9104 domss2 9106 fival 9370 fipwuni 9384 supexd 9411 cantnflem1 9649 dfac8clem 9992 onssnum 10000 dfac12lem1 10104 dfac12lem2 10105 fin1a2lem12 10371 hsmexlem1 10386 wrdexb 14497 restid 17403 prdsbas 17427 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 sscpwex 17784 pmtrfv 19389 istopon 22806 tgval 22849 eltg2 22852 tgss2 22881 neiptoptop 23025 restin 23060 restntr 23076 cnprest2 23184 pnrmopn 23237 cnrmnrm 23255 cmpsublem 23293 cmpsub 23294 cmpcld 23296 hausmapdom 23394 isref 23403 locfindis 23424 txbasex 23460 dfac14lem 23511 xkopt 23549 xkopjcn 23550 qtopval2 23590 elqtop 23591 fbssfi 23731 ptcmplem2 23947 cnextfval 23956 tuslem 24161 madeval 27767 pliguhgr 30422 acunirnmpt2 32591 acunirnmpt2f 32592 ist0cld 33830 hasheuni 34082 insiga 34134 sigagenval 34137 omsval 34291 omssubadd 34298 sibfof 34338 sitmcl 34349 kur14 35210 cvmscld 35267 fobigcup 35895 hfuni 36179 isfne 36334 isfne4b 36336 fnemeet1 36361 tailfval 36367 bj-restuni2 37093 pibt2 37412 kelac2 43061 cnfex 45029 unidmex 45051 pwpwuni 45058 salgenval 46326 intsaluni 46334 salgenn0 46336 caragenunidm 46513 afv2ex 47219 iscnrm3rlem3 48934 |
| Copyright terms: Public domain | W3C validator |