| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psmeasurelem | Structured version Visualization version GIF version | ||
| Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| psmeasurelem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| psmeasurelem.h | ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) |
| psmeasurelem.m | ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) |
| psmeasurelem.mf | ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) |
| psmeasurelem.y | ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
| psmeasurelem.dj | ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) |
| Ref | Expression |
|---|---|
| psmeasurelem | ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmeasurelem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) | |
| 2 | psmeasurelem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | 2 | pwexd 5321 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
| 4 | ssexg 5265 | . . . 4 ⊢ ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V) | |
| 5 | 1, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
| 6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
| 7 | uniiun 5010 | . . 3 ⊢ ∪ 𝑌 = ∪ 𝑦 ∈ 𝑌 𝑦 | |
| 8 | psmeasurelem.h | . . . 4 ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) | |
| 9 | elpwg 4556 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) | |
| 10 | 5, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
| 11 | 1, 10 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋) |
| 12 | pwpwuni 45035 | . . . . . . 7 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) | |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) |
| 14 | 11, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ∪ 𝑌 ∈ 𝒫 𝑋) |
| 15 | 14 | elpwid 4562 | . . . 4 ⊢ (𝜑 → ∪ 𝑌 ⊆ 𝑋) |
| 16 | 8, 15 | fssresd 6695 | . . 3 ⊢ (𝜑 → (𝐻 ↾ ∪ 𝑌):∪ 𝑌⟶(0[,]+∞)) |
| 17 | psmeasurelem.dj | . . 3 ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) | |
| 18 | 5, 6, 7, 16, 17 | sge0iun 46401 | . 2 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
| 19 | psmeasurelem.m | . . 3 ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) | |
| 20 | reseq2 5929 | . . . 4 ⊢ (𝑥 = ∪ 𝑌 → (𝐻 ↾ 𝑥) = (𝐻 ↾ ∪ 𝑌)) | |
| 21 | 20 | fveq2d 6830 | . . 3 ⊢ (𝑥 = ∪ 𝑌 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
| 22 | fvexd 6841 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) ∈ V) | |
| 23 | 19, 21, 14, 22 | fvmptd3 6957 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
| 24 | psmeasurelem.mf | . . . . . 6 ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) | |
| 25 | 24, 1 | fssresd 6695 | . . . . 5 ⊢ (𝜑 → (𝑀 ↾ 𝑌):𝑌⟶(0[,]+∞)) |
| 26 | 25 | feqmptd 6895 | . . . 4 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦))) |
| 27 | fvres 6845 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) | |
| 28 | 6, 27 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) |
| 29 | reseq2 5929 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐻 ↾ 𝑥) = (𝐻 ↾ 𝑦)) | |
| 30 | 29 | fveq2d 6830 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ 𝑦))) |
| 31 | 1 | sselda 3937 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝒫 𝑋) |
| 32 | fvexd 6841 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) ∈ V) | |
| 33 | 19, 30, 31, 32 | fvmptd3 6957 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑀‘𝑦) = (Σ^‘(𝐻 ↾ 𝑦))) |
| 34 | elssuni 4891 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝑌 → 𝑦 ⊆ ∪ 𝑌) | |
| 35 | resabs1 5961 | . . . . . . . . . 10 ⊢ (𝑦 ⊆ ∪ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) | |
| 36 | 34, 35 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) |
| 37 | 36 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑌 → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
| 38 | 37 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
| 39 | 38 | fveq2d 6830 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
| 40 | 28, 33, 39 | 3eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
| 41 | 40 | mpteq2dva 5188 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦)) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
| 42 | 26, 41 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
| 43 | 42 | fveq2d 6830 | . 2 ⊢ (𝜑 → (Σ^‘(𝑀 ↾ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
| 44 | 18, 23, 43 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 Disj wdisj 5062 ↦ cmpt 5176 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 +∞cpnf 11165 [,]cicc 13269 Σ^csumge0 46344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-xadd 13033 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-sumge0 46345 |
| This theorem is referenced by: psmeasure 46453 |
| Copyright terms: Public domain | W3C validator |