Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasurelem Structured version   Visualization version   GIF version

Theorem psmeasurelem 46479
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasurelem.x (𝜑𝑋𝑉)
psmeasurelem.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasurelem.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
psmeasurelem.mf (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
psmeasurelem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
psmeasurelem.dj (𝜑Disj 𝑦𝑌 𝑦)
Assertion
Ref Expression
psmeasurelem (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑦,𝑀   𝑥,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem psmeasurelem
StepHypRef Expression
1 psmeasurelem.y . . . 4 (𝜑𝑌 ⊆ 𝒫 𝑋)
2 psmeasurelem.x . . . . 5 (𝜑𝑋𝑉)
32pwexd 5354 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
4 ssexg 5298 . . . 4 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
51, 3, 4syl2anc 584 . . 3 (𝜑𝑌 ∈ V)
6 simpr 484 . . 3 ((𝜑𝑦𝑌) → 𝑦𝑌)
7 uniiun 5039 . . 3 𝑌 = 𝑦𝑌 𝑦
8 psmeasurelem.h . . . 4 (𝜑𝐻:𝑋⟶(0[,]+∞))
9 elpwg 4583 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
105, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
111, 10mpbird 257 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
12 pwpwuni 45061 . . . . . . 7 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
135, 12syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
1411, 13mpbid 232 . . . . 5 (𝜑 𝑌 ∈ 𝒫 𝑋)
1514elpwid 4589 . . . 4 (𝜑 𝑌𝑋)
168, 15fssresd 6750 . . 3 (𝜑 → (𝐻 𝑌): 𝑌⟶(0[,]+∞))
17 psmeasurelem.dj . . 3 (𝜑Disj 𝑦𝑌 𝑦)
185, 6, 7, 16, 17sge0iun 46428 . 2 (𝜑 → (Σ^‘(𝐻 𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
19 psmeasurelem.m . . 3 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
20 reseq2 5966 . . . 4 (𝑥 = 𝑌 → (𝐻𝑥) = (𝐻 𝑌))
2120fveq2d 6885 . . 3 (𝑥 = 𝑌 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 𝑌)))
22 fvexd 6896 . . 3 (𝜑 → (Σ^‘(𝐻 𝑌)) ∈ V)
2319, 21, 14, 22fvmptd3 7014 . 2 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝐻 𝑌)))
24 psmeasurelem.mf . . . . . 6 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
2524, 1fssresd 6750 . . . . 5 (𝜑 → (𝑀𝑌):𝑌⟶(0[,]+∞))
2625feqmptd 6952 . . . 4 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)))
27 fvres 6900 . . . . . . 7 (𝑦𝑌 → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
286, 27syl 17 . . . . . 6 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
29 reseq2 5966 . . . . . . . 8 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
3029fveq2d 6885 . . . . . . 7 (𝑥 = 𝑦 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻𝑦)))
311sselda 3963 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
32 fvexd 6896 . . . . . . 7 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) ∈ V)
3319, 30, 31, 32fvmptd3 7014 . . . . . 6 ((𝜑𝑦𝑌) → (𝑀𝑦) = (Σ^‘(𝐻𝑦)))
34 elssuni 4918 . . . . . . . . . 10 (𝑦𝑌𝑦 𝑌)
35 resabs1 5998 . . . . . . . . . 10 (𝑦 𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3634, 35syl 17 . . . . . . . . 9 (𝑦𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3736eqcomd 2742 . . . . . . . 8 (𝑦𝑌 → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3837adantl 481 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3938fveq2d 6885 . . . . . 6 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4028, 33, 393eqtrd 2775 . . . . 5 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4140mpteq2dva 5219 . . . 4 (𝜑 → (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4226, 41eqtrd 2771 . . 3 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4342fveq2d 6885 . 2 (𝜑 → (Σ^‘(𝑀𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
4418, 23, 433eqtr4d 2781 1 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580   cuni 4888  Disj wdisj 5091  cmpt 5206  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  +∞cpnf 11271  [,]cicc 13370  Σ^csumge0 46371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-xadd 13134  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-sumge0 46372
This theorem is referenced by:  psmeasure  46480
  Copyright terms: Public domain W3C validator