Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasurelem Structured version   Visualization version   GIF version

Theorem psmeasurelem 46452
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasurelem.x (𝜑𝑋𝑉)
psmeasurelem.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasurelem.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
psmeasurelem.mf (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
psmeasurelem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
psmeasurelem.dj (𝜑Disj 𝑦𝑌 𝑦)
Assertion
Ref Expression
psmeasurelem (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑦,𝑀   𝑥,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem psmeasurelem
StepHypRef Expression
1 psmeasurelem.y . . . 4 (𝜑𝑌 ⊆ 𝒫 𝑋)
2 psmeasurelem.x . . . . 5 (𝜑𝑋𝑉)
32pwexd 5321 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
4 ssexg 5265 . . . 4 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
51, 3, 4syl2anc 584 . . 3 (𝜑𝑌 ∈ V)
6 simpr 484 . . 3 ((𝜑𝑦𝑌) → 𝑦𝑌)
7 uniiun 5010 . . 3 𝑌 = 𝑦𝑌 𝑦
8 psmeasurelem.h . . . 4 (𝜑𝐻:𝑋⟶(0[,]+∞))
9 elpwg 4556 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
105, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
111, 10mpbird 257 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
12 pwpwuni 45035 . . . . . . 7 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
135, 12syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
1411, 13mpbid 232 . . . . 5 (𝜑 𝑌 ∈ 𝒫 𝑋)
1514elpwid 4562 . . . 4 (𝜑 𝑌𝑋)
168, 15fssresd 6695 . . 3 (𝜑 → (𝐻 𝑌): 𝑌⟶(0[,]+∞))
17 psmeasurelem.dj . . 3 (𝜑Disj 𝑦𝑌 𝑦)
185, 6, 7, 16, 17sge0iun 46401 . 2 (𝜑 → (Σ^‘(𝐻 𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
19 psmeasurelem.m . . 3 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
20 reseq2 5929 . . . 4 (𝑥 = 𝑌 → (𝐻𝑥) = (𝐻 𝑌))
2120fveq2d 6830 . . 3 (𝑥 = 𝑌 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 𝑌)))
22 fvexd 6841 . . 3 (𝜑 → (Σ^‘(𝐻 𝑌)) ∈ V)
2319, 21, 14, 22fvmptd3 6957 . 2 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝐻 𝑌)))
24 psmeasurelem.mf . . . . . 6 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
2524, 1fssresd 6695 . . . . 5 (𝜑 → (𝑀𝑌):𝑌⟶(0[,]+∞))
2625feqmptd 6895 . . . 4 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)))
27 fvres 6845 . . . . . . 7 (𝑦𝑌 → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
286, 27syl 17 . . . . . 6 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
29 reseq2 5929 . . . . . . . 8 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
3029fveq2d 6830 . . . . . . 7 (𝑥 = 𝑦 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻𝑦)))
311sselda 3937 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
32 fvexd 6841 . . . . . . 7 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) ∈ V)
3319, 30, 31, 32fvmptd3 6957 . . . . . 6 ((𝜑𝑦𝑌) → (𝑀𝑦) = (Σ^‘(𝐻𝑦)))
34 elssuni 4891 . . . . . . . . . 10 (𝑦𝑌𝑦 𝑌)
35 resabs1 5961 . . . . . . . . . 10 (𝑦 𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3634, 35syl 17 . . . . . . . . 9 (𝑦𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3736eqcomd 2735 . . . . . . . 8 (𝑦𝑌 → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3837adantl 481 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3938fveq2d 6830 . . . . . 6 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4028, 33, 393eqtrd 2768 . . . . 5 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4140mpteq2dva 5188 . . . 4 (𝜑 → (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4226, 41eqtrd 2764 . . 3 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4342fveq2d 6830 . 2 (𝜑 → (Σ^‘(𝑀𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
4418, 23, 433eqtr4d 2774 1 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  𝒫 cpw 4553   cuni 4861  Disj wdisj 5062  cmpt 5176  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  +∞cpnf 11165  [,]cicc 13269  Σ^csumge0 46344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-sumge0 46345
This theorem is referenced by:  psmeasure  46453
  Copyright terms: Public domain W3C validator