Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasurelem Structured version   Visualization version   GIF version

Theorem psmeasurelem 46475
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasurelem.x (𝜑𝑋𝑉)
psmeasurelem.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasurelem.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
psmeasurelem.mf (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
psmeasurelem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
psmeasurelem.dj (𝜑Disj 𝑦𝑌 𝑦)
Assertion
Ref Expression
psmeasurelem (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑦,𝑀   𝑥,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem psmeasurelem
StepHypRef Expression
1 psmeasurelem.y . . . 4 (𝜑𝑌 ⊆ 𝒫 𝑋)
2 psmeasurelem.x . . . . 5 (𝜑𝑋𝑉)
32pwexd 5337 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
4 ssexg 5281 . . . 4 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
51, 3, 4syl2anc 584 . . 3 (𝜑𝑌 ∈ V)
6 simpr 484 . . 3 ((𝜑𝑦𝑌) → 𝑦𝑌)
7 uniiun 5025 . . 3 𝑌 = 𝑦𝑌 𝑦
8 psmeasurelem.h . . . 4 (𝜑𝐻:𝑋⟶(0[,]+∞))
9 elpwg 4569 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
105, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
111, 10mpbird 257 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
12 pwpwuni 45058 . . . . . . 7 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
135, 12syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
1411, 13mpbid 232 . . . . 5 (𝜑 𝑌 ∈ 𝒫 𝑋)
1514elpwid 4575 . . . 4 (𝜑 𝑌𝑋)
168, 15fssresd 6730 . . 3 (𝜑 → (𝐻 𝑌): 𝑌⟶(0[,]+∞))
17 psmeasurelem.dj . . 3 (𝜑Disj 𝑦𝑌 𝑦)
185, 6, 7, 16, 17sge0iun 46424 . 2 (𝜑 → (Σ^‘(𝐻 𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
19 psmeasurelem.m . . 3 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
20 reseq2 5948 . . . 4 (𝑥 = 𝑌 → (𝐻𝑥) = (𝐻 𝑌))
2120fveq2d 6865 . . 3 (𝑥 = 𝑌 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 𝑌)))
22 fvexd 6876 . . 3 (𝜑 → (Σ^‘(𝐻 𝑌)) ∈ V)
2319, 21, 14, 22fvmptd3 6994 . 2 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝐻 𝑌)))
24 psmeasurelem.mf . . . . . 6 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
2524, 1fssresd 6730 . . . . 5 (𝜑 → (𝑀𝑌):𝑌⟶(0[,]+∞))
2625feqmptd 6932 . . . 4 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)))
27 fvres 6880 . . . . . . 7 (𝑦𝑌 → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
286, 27syl 17 . . . . . 6 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
29 reseq2 5948 . . . . . . . 8 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
3029fveq2d 6865 . . . . . . 7 (𝑥 = 𝑦 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻𝑦)))
311sselda 3949 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
32 fvexd 6876 . . . . . . 7 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) ∈ V)
3319, 30, 31, 32fvmptd3 6994 . . . . . 6 ((𝜑𝑦𝑌) → (𝑀𝑦) = (Σ^‘(𝐻𝑦)))
34 elssuni 4904 . . . . . . . . . 10 (𝑦𝑌𝑦 𝑌)
35 resabs1 5980 . . . . . . . . . 10 (𝑦 𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3634, 35syl 17 . . . . . . . . 9 (𝑦𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3736eqcomd 2736 . . . . . . . 8 (𝑦𝑌 → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3837adantl 481 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3938fveq2d 6865 . . . . . 6 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4028, 33, 393eqtrd 2769 . . . . 5 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4140mpteq2dva 5203 . . . 4 (𝜑 → (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4226, 41eqtrd 2765 . . 3 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4342fveq2d 6865 . 2 (𝜑 → (Σ^‘(𝑀𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
4418, 23, 433eqtr4d 2775 1 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874  Disj wdisj 5077  cmpt 5191  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  [,]cicc 13316  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368
This theorem is referenced by:  psmeasure  46476
  Copyright terms: Public domain W3C validator