Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psmeasurelem | Structured version Visualization version GIF version |
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
psmeasurelem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
psmeasurelem.h | ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) |
psmeasurelem.m | ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) |
psmeasurelem.mf | ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) |
psmeasurelem.y | ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
psmeasurelem.dj | ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) |
Ref | Expression |
---|---|
psmeasurelem | ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmeasurelem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) | |
2 | psmeasurelem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | pwexd 5297 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
4 | ssexg 5242 | . . . 4 ⊢ ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V) | |
5 | 1, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
7 | uniiun 4984 | . . 3 ⊢ ∪ 𝑌 = ∪ 𝑦 ∈ 𝑌 𝑦 | |
8 | psmeasurelem.h | . . . 4 ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) | |
9 | elpwg 4533 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) | |
10 | 5, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
11 | 1, 10 | mpbird 256 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋) |
12 | pwpwuni 42494 | . . . . . . 7 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) | |
13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) |
14 | 11, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ∪ 𝑌 ∈ 𝒫 𝑋) |
15 | 14 | elpwid 4541 | . . . 4 ⊢ (𝜑 → ∪ 𝑌 ⊆ 𝑋) |
16 | 8, 15 | fssresd 6625 | . . 3 ⊢ (𝜑 → (𝐻 ↾ ∪ 𝑌):∪ 𝑌⟶(0[,]+∞)) |
17 | psmeasurelem.dj | . . 3 ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) | |
18 | 5, 6, 7, 16, 17 | sge0iun 43847 | . 2 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
19 | psmeasurelem.m | . . 3 ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) | |
20 | reseq2 5875 | . . . 4 ⊢ (𝑥 = ∪ 𝑌 → (𝐻 ↾ 𝑥) = (𝐻 ↾ ∪ 𝑌)) | |
21 | 20 | fveq2d 6760 | . . 3 ⊢ (𝑥 = ∪ 𝑌 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
22 | fvexd 6771 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) ∈ V) | |
23 | 19, 21, 14, 22 | fvmptd3 6880 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
24 | psmeasurelem.mf | . . . . . 6 ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) | |
25 | 24, 1 | fssresd 6625 | . . . . 5 ⊢ (𝜑 → (𝑀 ↾ 𝑌):𝑌⟶(0[,]+∞)) |
26 | 25 | feqmptd 6819 | . . . 4 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦))) |
27 | fvres 6775 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) | |
28 | 6, 27 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) |
29 | reseq2 5875 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐻 ↾ 𝑥) = (𝐻 ↾ 𝑦)) | |
30 | 29 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ 𝑦))) |
31 | 1 | sselda 3917 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝒫 𝑋) |
32 | fvexd 6771 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) ∈ V) | |
33 | 19, 30, 31, 32 | fvmptd3 6880 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑀‘𝑦) = (Σ^‘(𝐻 ↾ 𝑦))) |
34 | elssuni 4868 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝑌 → 𝑦 ⊆ ∪ 𝑌) | |
35 | resabs1 5910 | . . . . . . . . . 10 ⊢ (𝑦 ⊆ ∪ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) | |
36 | 34, 35 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) |
37 | 36 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑌 → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
38 | 37 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
39 | 38 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
40 | 28, 33, 39 | 3eqtrd 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
41 | 40 | mpteq2dva 5170 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦)) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
42 | 26, 41 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
43 | 42 | fveq2d 6760 | . 2 ⊢ (𝜑 → (Σ^‘(𝑀 ↾ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
44 | 18, 23, 43 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 Disj wdisj 5035 ↦ cmpt 5153 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 Σ^csumge0 43790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 |
This theorem is referenced by: psmeasure 43899 |
Copyright terms: Public domain | W3C validator |