Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasurelem Structured version   Visualization version   GIF version

Theorem psmeasurelem 43048
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasurelem.x (𝜑𝑋𝑉)
psmeasurelem.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasurelem.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
psmeasurelem.mf (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
psmeasurelem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
psmeasurelem.dj (𝜑Disj 𝑦𝑌 𝑦)
Assertion
Ref Expression
psmeasurelem (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑦,𝑀   𝑥,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem psmeasurelem
StepHypRef Expression
1 psmeasurelem.y . . . 4 (𝜑𝑌 ⊆ 𝒫 𝑋)
2 psmeasurelem.x . . . . 5 (𝜑𝑋𝑉)
32pwexd 5257 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
4 ssexg 5203 . . . 4 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
51, 3, 4syl2anc 587 . . 3 (𝜑𝑌 ∈ V)
6 simpr 488 . . 3 ((𝜑𝑦𝑌) → 𝑦𝑌)
7 uniiun 4957 . . 3 𝑌 = 𝑦𝑌 𝑦
8 psmeasurelem.h . . . 4 (𝜑𝐻:𝑋⟶(0[,]+∞))
9 elpwg 4514 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
105, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
111, 10mpbird 260 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
12 pwpwuni 41625 . . . . . . 7 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
135, 12syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
1411, 13mpbid 235 . . . . 5 (𝜑 𝑌 ∈ 𝒫 𝑋)
1514elpwid 4522 . . . 4 (𝜑 𝑌𝑋)
168, 15fssresd 6526 . . 3 (𝜑 → (𝐻 𝑌): 𝑌⟶(0[,]+∞))
17 psmeasurelem.dj . . 3 (𝜑Disj 𝑦𝑌 𝑦)
185, 6, 7, 16, 17sge0iun 42997 . 2 (𝜑 → (Σ^‘(𝐻 𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
19 psmeasurelem.m . . 3 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
20 reseq2 5826 . . . 4 (𝑥 = 𝑌 → (𝐻𝑥) = (𝐻 𝑌))
2120fveq2d 6656 . . 3 (𝑥 = 𝑌 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 𝑌)))
22 fvexd 6667 . . 3 (𝜑 → (Σ^‘(𝐻 𝑌)) ∈ V)
2319, 21, 14, 22fvmptd3 6773 . 2 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝐻 𝑌)))
24 psmeasurelem.mf . . . . . 6 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
2524, 1fssresd 6526 . . . . 5 (𝜑 → (𝑀𝑌):𝑌⟶(0[,]+∞))
2625feqmptd 6715 . . . 4 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)))
27 fvres 6671 . . . . . . 7 (𝑦𝑌 → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
286, 27syl 17 . . . . . 6 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
29 reseq2 5826 . . . . . . . 8 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
3029fveq2d 6656 . . . . . . 7 (𝑥 = 𝑦 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻𝑦)))
311sselda 3942 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
32 fvexd 6667 . . . . . . 7 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) ∈ V)
3319, 30, 31, 32fvmptd3 6773 . . . . . 6 ((𝜑𝑦𝑌) → (𝑀𝑦) = (Σ^‘(𝐻𝑦)))
34 elssuni 4843 . . . . . . . . . 10 (𝑦𝑌𝑦 𝑌)
35 resabs1 5861 . . . . . . . . . 10 (𝑦 𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3634, 35syl 17 . . . . . . . . 9 (𝑦𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
3736eqcomd 2828 . . . . . . . 8 (𝑦𝑌 → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3837adantl 485 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
3938fveq2d 6656 . . . . . 6 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4028, 33, 393eqtrd 2861 . . . . 5 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4140mpteq2dva 5137 . . . 4 (𝜑 → (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4226, 41eqtrd 2857 . . 3 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4342fveq2d 6656 . 2 (𝜑 → (Σ^‘(𝑀𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
4418, 23, 433eqtr4d 2867 1 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  Vcvv 3469  wss 3908  𝒫 cpw 4511   cuni 4813  Disj wdisj 5007  cmpt 5122  cres 5534  wf 6330  cfv 6334  (class class class)co 7140  0cc0 10526  +∞cpnf 10661  [,]cicc 12729  Σ^csumge0 42940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-sumge0 42941
This theorem is referenced by:  psmeasure  43049
  Copyright terms: Public domain W3C validator