![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psmeasurelem | Structured version Visualization version GIF version |
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
psmeasurelem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
psmeasurelem.h | ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) |
psmeasurelem.m | ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) |
psmeasurelem.mf | ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) |
psmeasurelem.y | ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
psmeasurelem.dj | ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) |
Ref | Expression |
---|---|
psmeasurelem | ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmeasurelem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) | |
2 | psmeasurelem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | pwexd 5339 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
4 | ssexg 5285 | . . . 4 ⊢ ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V) | |
5 | 1, 3, 4 | syl2anc 585 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
6 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
7 | uniiun 5023 | . . 3 ⊢ ∪ 𝑌 = ∪ 𝑦 ∈ 𝑌 𝑦 | |
8 | psmeasurelem.h | . . . 4 ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) | |
9 | elpwg 4568 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) | |
10 | 5, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
11 | 1, 10 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋) |
12 | pwpwuni 43339 | . . . . . . 7 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) | |
13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) |
14 | 11, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ∪ 𝑌 ∈ 𝒫 𝑋) |
15 | 14 | elpwid 4574 | . . . 4 ⊢ (𝜑 → ∪ 𝑌 ⊆ 𝑋) |
16 | 8, 15 | fssresd 6714 | . . 3 ⊢ (𝜑 → (𝐻 ↾ ∪ 𝑌):∪ 𝑌⟶(0[,]+∞)) |
17 | psmeasurelem.dj | . . 3 ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) | |
18 | 5, 6, 7, 16, 17 | sge0iun 44734 | . 2 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
19 | psmeasurelem.m | . . 3 ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) | |
20 | reseq2 5937 | . . . 4 ⊢ (𝑥 = ∪ 𝑌 → (𝐻 ↾ 𝑥) = (𝐻 ↾ ∪ 𝑌)) | |
21 | 20 | fveq2d 6851 | . . 3 ⊢ (𝑥 = ∪ 𝑌 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
22 | fvexd 6862 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) ∈ V) | |
23 | 19, 21, 14, 22 | fvmptd3 6976 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
24 | psmeasurelem.mf | . . . . . 6 ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) | |
25 | 24, 1 | fssresd 6714 | . . . . 5 ⊢ (𝜑 → (𝑀 ↾ 𝑌):𝑌⟶(0[,]+∞)) |
26 | 25 | feqmptd 6915 | . . . 4 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦))) |
27 | fvres 6866 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) | |
28 | 6, 27 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) |
29 | reseq2 5937 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐻 ↾ 𝑥) = (𝐻 ↾ 𝑦)) | |
30 | 29 | fveq2d 6851 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ 𝑦))) |
31 | 1 | sselda 3949 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝒫 𝑋) |
32 | fvexd 6862 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) ∈ V) | |
33 | 19, 30, 31, 32 | fvmptd3 6976 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑀‘𝑦) = (Σ^‘(𝐻 ↾ 𝑦))) |
34 | elssuni 4903 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝑌 → 𝑦 ⊆ ∪ 𝑌) | |
35 | resabs1 5972 | . . . . . . . . . 10 ⊢ (𝑦 ⊆ ∪ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) | |
36 | 34, 35 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) |
37 | 36 | eqcomd 2743 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑌 → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
38 | 37 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
39 | 38 | fveq2d 6851 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
40 | 28, 33, 39 | 3eqtrd 2781 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
41 | 40 | mpteq2dva 5210 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦)) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
42 | 26, 41 | eqtrd 2777 | . . 3 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
43 | 42 | fveq2d 6851 | . 2 ⊢ (𝜑 → (Σ^‘(𝑀 ↾ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
44 | 18, 23, 43 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ⊆ wss 3915 𝒫 cpw 4565 ∪ cuni 4870 Disj wdisj 5075 ↦ cmpt 5193 ↾ cres 5640 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 0cc0 11058 +∞cpnf 11193 [,]cicc 13274 Σ^csumge0 44677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-ac2 10406 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-disj 5076 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-oi 9453 df-card 9882 df-acn 9885 df-ac 10059 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-xadd 13041 df-ico 13277 df-icc 13278 df-fz 13432 df-fzo 13575 df-seq 13914 df-exp 13975 df-hash 14238 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-clim 15377 df-sum 15578 df-sumge0 44678 |
This theorem is referenced by: psmeasure 44786 |
Copyright terms: Public domain | W3C validator |