MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4566
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4549 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2894 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3922 . . 3 𝑥 𝑦𝐴
54nfab 2900 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2892 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2709  wnfc 2879  wss 3897  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-ss 3914  df-pw 4549
This theorem is referenced by:  esum2d  34106  ldsysgenld  34173  stoweidlem57  46154  sge0iunmptlemre  46512  nfafv2  47317
  Copyright terms: Public domain W3C validator