MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4554
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4535 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2907 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3913 . . 3 𝑥 𝑦𝐴
54nfab 2913 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2905 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2715  wnfc 2887  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by:  esum2d  32061  ldsysgenld  32128  stoweidlem57  43598  sge0iunmptlemre  43953  nfafv2  44710
  Copyright terms: Public domain W3C validator