MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4551
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4532 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2906 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3909 . . 3 𝑥 𝑦𝐴
54nfab 2912 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2904 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2715  wnfc 2886  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  esum2d  31961  ldsysgenld  32028  stoweidlem57  43488  sge0iunmptlemre  43843  nfafv2  44597
  Copyright terms: Public domain W3C validator