| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfpw.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfpw | ⊢ Ⅎ𝑥𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4582 | . 2 ⊢ 𝒫 𝐴 = {𝑦 ∣ 𝑦 ⊆ 𝐴} | |
| 2 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfpw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfss 3956 | . . 3 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
| 5 | 4 | nfab 2903 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ 𝑦 ⊆ 𝐴} |
| 6 | 1, 5 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2712 Ⅎwnfc 2882 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: esum2d 34053 ldsysgenld 34120 stoweidlem57 46029 sge0iunmptlemre 46387 nfafv2 47188 |
| Copyright terms: Public domain | W3C validator |