MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4641
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4624 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2908 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 4001 . . 3 𝑥 𝑦𝐴
54nfab 2914 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2906 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2717  wnfc 2893  wss 3976  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-ss 3993  df-pw 4624
This theorem is referenced by:  esum2d  34057  ldsysgenld  34124  stoweidlem57  45978  sge0iunmptlemre  46336  nfafv2  47133
  Copyright terms: Public domain W3C validator