![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfpw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfpw.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfpw | ⊢ Ⅎ𝑥𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4566 | . 2 ⊢ 𝒫 𝐴 = {𝑦 ∣ 𝑦 ⊆ 𝐴} | |
2 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
3 | nfpw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfss 3940 | . . 3 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
5 | 4 | nfab 2910 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ 𝑦 ⊆ 𝐴} |
6 | 1, 5 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2710 Ⅎwnfc 2884 ⊆ wss 3914 𝒫 cpw 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-v 3449 df-in 3921 df-ss 3931 df-pw 4566 |
This theorem is referenced by: esum2d 32756 ldsysgenld 32823 stoweidlem57 44388 sge0iunmptlemre 44746 nfafv2 45540 |
Copyright terms: Public domain | W3C validator |