MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4599
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4582 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2897 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3956 . . 3 𝑥 𝑦𝐴
54nfab 2903 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2895 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2712  wnfc 2882  wss 3931  𝒫 cpw 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-ss 3948  df-pw 4582
This theorem is referenced by:  esum2d  34053  ldsysgenld  34120  stoweidlem57  46029  sge0iunmptlemre  46387  nfafv2  47188
  Copyright terms: Public domain W3C validator