![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfpw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfpw.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfpw | ⊢ Ⅎ𝑥𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4624 | . 2 ⊢ 𝒫 𝐴 = {𝑦 ∣ 𝑦 ⊆ 𝐴} | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
3 | nfpw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfss 4001 | . . 3 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
5 | 4 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ 𝑦 ⊆ 𝐴} |
6 | 1, 5 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2717 Ⅎwnfc 2893 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-ss 3993 df-pw 4624 |
This theorem is referenced by: esum2d 34057 ldsysgenld 34124 stoweidlem57 45978 sge0iunmptlemre 46336 nfafv2 47133 |
Copyright terms: Public domain | W3C validator |