MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4585
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4568 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2892 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3942 . . 3 𝑥 𝑦𝐴
54nfab 2898 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2890 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2708  wnfc 2877  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-ss 3934  df-pw 4568
This theorem is referenced by:  esum2d  34090  ldsysgenld  34157  stoweidlem57  46062  sge0iunmptlemre  46420  nfafv2  47223
  Copyright terms: Public domain W3C validator