| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfpw.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfpw | ⊢ Ⅎ𝑥𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4565 | . 2 ⊢ 𝒫 𝐴 = {𝑦 ∣ 𝑦 ⊆ 𝐴} | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfpw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfss 3939 | . . 3 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
| 5 | 4 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ 𝑦 ⊆ 𝐴} |
| 6 | 1, 5 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2707 Ⅎwnfc 2876 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: esum2d 34083 ldsysgenld 34150 stoweidlem57 46055 sge0iunmptlemre 46413 nfafv2 47219 |
| Copyright terms: Public domain | W3C validator |