MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Visualization version   GIF version

Theorem nfpw 4534
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4515 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2904 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3892 . . 3 𝑥 𝑦𝐴
54nfab 2910 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2902 1 𝑥𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2714  wnfc 2884  wss 3866  𝒫 cpw 4513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515
This theorem is referenced by:  esum2d  31773  ldsysgenld  31840  stoweidlem57  43273  sge0iunmptlemre  43628  nfafv2  44382
  Copyright terms: Public domain W3C validator