![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4618 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-pw 4606 |
This theorem is referenced by: undefval 8299 pmvalg 8875 marypha1lem 9470 marypha1 9471 r1val3 9875 ackbij2lem2 10276 ackbij2lem3 10277 r1om 10280 isfin2 10331 hsmexlem8 10461 vdwmc 17011 hashbcval 17035 ismre 17634 mrcfval 17652 mrisval 17674 mreexexlemd 17688 brssc 17861 lubfval 18407 glbfval 18420 isclat 18557 issubmgm 18727 issubm 18828 issubg 19156 cntzfval 19350 lsmfval 19670 lsmpropd 19709 pj1fval 19726 issubrng 20563 issubrg 20587 rgspnval 20628 lssset 20948 lspfval 20988 lsppropd 21034 islbs 21092 sraval 21191 ocvfval 21701 isobs 21757 islinds 21846 aspval 21910 opsrval 22081 ply1frcl 22337 evls1fval 22338 basis1 22972 baspartn 22976 cldval 23046 ntrfval 23047 clsfval 23048 mretopd 23115 neifval 23122 lpfval 23161 cncls2 23296 iscnrm 23346 iscnrm2 23361 2ndcsep 23482 kgenval 23558 xkoval 23610 dfac14 23641 qtopval 23718 qtopval2 23719 isfbas 23852 trfbas2 23866 flimval 23986 elflim 23994 flimclslem 24007 fclsfnflim 24050 fclscmp 24053 tsmsfbas 24151 tsmsval2 24153 ustval 24226 utopval 24256 mopnfss 24468 setsmstopn 24505 met2ndc 24551 madeval 27905 elmade2 27921 istrkgb 28477 isuhgr 29091 isushgr 29092 isuhgrop 29101 uhgrun 29105 uhgrstrrepe 29109 isupgr 29115 upgrop 29125 isumgr 29126 upgrun 29149 umgrun 29151 isuspgr 29183 isusgr 29184 isuspgrop 29192 isusgrop 29193 ausgrusgrb 29196 usgrstrrepe 29266 issubgr 29302 uhgrspansubgrlem 29321 usgrexi 29472 1hevtxdg1 29538 umgr2v2e 29557 zarcmplem 33841 ismeas 34179 omsval 34274 omscl 34276 omsf 34277 oms0 34278 carsgval 34284 omsmeas 34304 erdszelem3 35177 erdsze 35186 kur14 35200 iscvm 35243 mpstval 35519 mclsval 35547 bj-imdirvallem 37162 pibp21 37397 heibor 37807 idlval 37999 igenval 38047 paddfval 39779 pclfvalN 39871 polfvalN 39886 docaffvalN 41103 docafvalN 41104 djaffvalN 41115 djafvalN 41116 dochffval 41331 dochfval 41332 djhffval 41378 djhfval 41379 lpolsetN 41464 lcdlss2N 41602 mzpclval 42712 dfac21 43054 islmodfg 43057 islssfg 43058 rfovd 43990 fsovrfovd 43998 gneispace2 44121 ismnu 44256 sge0val 46321 ismea 46406 psmeasure 46426 caragenval 46448 isome 46449 omeunile 46460 isomennd 46486 ovnval 46496 hspmbl 46584 isvonmbl 46593 afv2eq12d 47164 isisubgr 47785 isubgruhgr 47791 stgrfv 47855 stgrusgra 47861 gpgov 47936 gpgusgra 47946 lincop 48253 lcoop 48256 islininds 48291 ldepsnlinc 48353 isclatd 48771 |
Copyright terms: Public domain | W3C validator |