| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 4561 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: undefval 8206 pmvalg 8761 marypha1lem 9317 marypha1 9318 r1val3 9731 ackbij2lem2 10130 ackbij2lem3 10131 r1om 10134 isfin2 10185 hsmexlem8 10315 vdwmc 16890 hashbcval 16914 ismre 17492 mrcfval 17514 mrisval 17536 mreexexlemd 17550 brssc 17721 lubfval 18254 glbfval 18267 isclat 18406 issubmgm 18610 issubm 18711 issubg 19039 cntzfval 19232 lsmfval 19550 lsmpropd 19589 pj1fval 19606 issubrng 20462 issubrg 20486 rgspnval 20527 lssset 20866 lspfval 20906 lsppropd 20952 islbs 21010 sraval 21109 ocvfval 21603 isobs 21657 islinds 21746 aspval 21810 opsrval 21981 ply1frcl 22233 evls1fval 22234 basis1 22865 baspartn 22869 cldval 22938 ntrfval 22939 clsfval 22940 mretopd 23007 neifval 23014 lpfval 23053 cncls2 23188 iscnrm 23238 iscnrm2 23253 2ndcsep 23374 kgenval 23450 xkoval 23502 dfac14 23533 qtopval 23610 qtopval2 23611 isfbas 23744 trfbas2 23758 flimval 23878 elflim 23886 flimclslem 23899 fclsfnflim 23942 fclscmp 23945 tsmsfbas 24043 tsmsval2 24045 ustval 24118 utopval 24147 mopnfss 24358 setsmstopn 24393 met2ndc 24438 madeval 27793 elmade2 27813 istrkgb 28433 isuhgr 29038 isushgr 29039 isuhgrop 29048 uhgrun 29052 uhgrstrrepe 29056 isupgr 29062 upgrop 29072 isumgr 29073 upgrun 29096 umgrun 29098 isuspgr 29130 isusgr 29131 isuspgrop 29139 isusgrop 29140 ausgrusgrb 29143 usgrstrrepe 29213 issubgr 29249 uhgrspansubgrlem 29268 usgrexi 29419 1hevtxdg1 29485 umgr2v2e 29504 zarcmplem 33894 ismeas 34212 omsval 34306 omscl 34308 omsf 34309 oms0 34310 carsgval 34316 omsmeas 34336 erdszelem3 35237 erdsze 35246 kur14 35260 iscvm 35303 mpstval 35579 mclsval 35607 bj-imdirvallem 37224 pibp21 37459 heibor 37871 idlval 38063 igenval 38111 paddfval 39906 pclfvalN 39998 polfvalN 40013 docaffvalN 41230 docafvalN 41231 djaffvalN 41242 djafvalN 41243 dochffval 41458 dochfval 41459 djhffval 41505 djhfval 41506 lpolsetN 41591 lcdlss2N 41729 mzpclval 42828 dfac21 43169 islmodfg 43172 islssfg 43173 rfovd 44104 fsovrfovd 44112 gneispace2 44235 ismnu 44364 sge0val 46474 ismea 46559 psmeasure 46579 caragenval 46601 isome 46602 omeunile 46613 isomennd 46639 ovnval 46649 hspmbl 46737 isvonmbl 46746 afv2eq12d 47325 isisubgr 47972 isubgruhgr 47978 stgrfv 48063 stgrusgra 48069 gpgov 48152 gpgusgra 48167 lincop 48519 lcoop 48522 islininds 48557 ldepsnlinc 48619 isclatd 49093 |
| Copyright terms: Public domain | W3C validator |