| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 4580 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: undefval 8258 pmvalg 8813 marypha1lem 9391 marypha1 9392 r1val3 9798 ackbij2lem2 10199 ackbij2lem3 10200 r1om 10203 isfin2 10254 hsmexlem8 10384 vdwmc 16956 hashbcval 16980 ismre 17558 mrcfval 17576 mrisval 17598 mreexexlemd 17612 brssc 17783 lubfval 18316 glbfval 18329 isclat 18466 issubmgm 18636 issubm 18737 issubg 19065 cntzfval 19259 lsmfval 19575 lsmpropd 19614 pj1fval 19631 issubrng 20463 issubrg 20487 rgspnval 20528 lssset 20846 lspfval 20886 lsppropd 20932 islbs 20990 sraval 21089 ocvfval 21582 isobs 21636 islinds 21725 aspval 21789 opsrval 21960 ply1frcl 22212 evls1fval 22213 basis1 22844 baspartn 22848 cldval 22917 ntrfval 22918 clsfval 22919 mretopd 22986 neifval 22993 lpfval 23032 cncls2 23167 iscnrm 23217 iscnrm2 23232 2ndcsep 23353 kgenval 23429 xkoval 23481 dfac14 23512 qtopval 23589 qtopval2 23590 isfbas 23723 trfbas2 23737 flimval 23857 elflim 23865 flimclslem 23878 fclsfnflim 23921 fclscmp 23924 tsmsfbas 24022 tsmsval2 24024 ustval 24097 utopval 24127 mopnfss 24338 setsmstopn 24373 met2ndc 24418 madeval 27767 elmade2 27787 istrkgb 28389 isuhgr 28994 isushgr 28995 isuhgrop 29004 uhgrun 29008 uhgrstrrepe 29012 isupgr 29018 upgrop 29028 isumgr 29029 upgrun 29052 umgrun 29054 isuspgr 29086 isusgr 29087 isuspgrop 29095 isusgrop 29096 ausgrusgrb 29099 usgrstrrepe 29169 issubgr 29205 uhgrspansubgrlem 29224 usgrexi 29375 1hevtxdg1 29441 umgr2v2e 29460 zarcmplem 33878 ismeas 34196 omsval 34291 omscl 34293 omsf 34294 oms0 34295 carsgval 34301 omsmeas 34321 erdszelem3 35187 erdsze 35196 kur14 35210 iscvm 35253 mpstval 35529 mclsval 35557 bj-imdirvallem 37175 pibp21 37410 heibor 37822 idlval 38014 igenval 38062 paddfval 39798 pclfvalN 39890 polfvalN 39905 docaffvalN 41122 docafvalN 41123 djaffvalN 41134 djafvalN 41135 dochffval 41350 dochfval 41351 djhffval 41397 djhfval 41398 lpolsetN 41483 lcdlss2N 41621 mzpclval 42720 dfac21 43062 islmodfg 43065 islssfg 43066 rfovd 43997 fsovrfovd 44005 gneispace2 44128 ismnu 44257 sge0val 46371 ismea 46456 psmeasure 46476 caragenval 46498 isome 46499 omeunile 46510 isomennd 46536 ovnval 46546 hspmbl 46634 isvonmbl 46643 afv2eq12d 47220 isisubgr 47866 isubgruhgr 47872 stgrfv 47956 stgrusgra 47962 gpgov 48037 gpgusgra 48052 lincop 48401 lcoop 48404 islininds 48439 ldepsnlinc 48501 isclatd 48975 |
| Copyright terms: Public domain | W3C validator |