Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4546 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: undefval 8063 pmvalg 8584 marypha1lem 9122 marypha1 9123 r1val3 9527 ackbij2lem2 9927 ackbij2lem3 9928 r1om 9931 isfin2 9981 hsmexlem8 10111 vdwmc 16607 hashbcval 16631 ismre 17216 mrcfval 17234 mrisval 17256 mreexexlemd 17270 brssc 17443 lubfval 17983 glbfval 17996 isclat 18133 issubm 18357 issubg 18670 cntzfval 18841 lsmfval 19158 lsmpropd 19198 pj1fval 19215 issubrg 19939 lssset 20110 lspfval 20150 lsppropd 20195 islbs 20253 sraval 20353 ocvfval 20783 isobs 20837 islinds 20926 aspval 20987 opsrval 21157 ply1frcl 21394 evls1fval 21395 basis1 22008 baspartn 22012 cldval 22082 ntrfval 22083 clsfval 22084 mretopd 22151 neifval 22158 lpfval 22197 cncls2 22332 iscnrm 22382 iscnrm2 22397 2ndcsep 22518 kgenval 22594 xkoval 22646 dfac14 22677 qtopval 22754 qtopval2 22755 isfbas 22888 trfbas2 22902 flimval 23022 elflim 23030 flimclslem 23043 fclsfnflim 23086 fclscmp 23089 tsmsfbas 23187 tsmsval2 23189 ustval 23262 utopval 23292 mopnfss 23504 setsmstopn 23539 met2ndc 23585 istrkgb 26720 isuhgr 27333 isushgr 27334 isuhgrop 27343 uhgrun 27347 uhgrstrrepe 27351 isupgr 27357 upgrop 27367 isumgr 27368 upgrun 27391 umgrun 27393 isuspgr 27425 isusgr 27426 isuspgrop 27434 isusgrop 27435 ausgrusgrb 27438 usgrstrrepe 27505 issubgr 27541 uhgrspansubgrlem 27560 usgrexi 27711 1hevtxdg1 27776 umgr2v2e 27795 zarcmplem 31733 ismeas 32067 omsval 32160 omscl 32162 omsf 32163 oms0 32164 carsgval 32170 omsmeas 32190 erdszelem3 33055 erdsze 33064 kur14 33078 iscvm 33121 mpstval 33397 mclsval 33425 madeval 33963 elmade2 33979 bj-imdirvallem 35278 pibp21 35513 heibor 35906 idlval 36098 igenval 36146 paddfval 37738 pclfvalN 37830 polfvalN 37845 docaffvalN 39062 docafvalN 39063 djaffvalN 39074 djafvalN 39075 dochffval 39290 dochfval 39291 djhffval 39337 djhfval 39338 lpolsetN 39423 lcdlss2N 39561 mzpclval 40463 dfac21 40807 islmodfg 40810 islssfg 40811 rgspnval 40909 rfovd 41498 fsovrfovd 41506 gneispace2 41631 ismnu 41768 sge0val 43794 ismea 43879 psmeasure 43899 caragenval 43921 isome 43922 omeunile 43933 isomennd 43959 ovnval 43969 hspmbl 44057 isvonmbl 44066 afv2eq12d 44594 issubmgm 45231 lincop 45637 lcoop 45640 islininds 45675 ldepsnlinc 45737 isclatd 46157 |
Copyright terms: Public domain | W3C validator |