| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 4573 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: undefval 8232 pmvalg 8787 marypha1lem 9360 marypha1 9361 r1val3 9767 ackbij2lem2 10168 ackbij2lem3 10169 r1om 10172 isfin2 10223 hsmexlem8 10353 vdwmc 16925 hashbcval 16949 ismre 17527 mrcfval 17549 mrisval 17571 mreexexlemd 17585 brssc 17756 lubfval 18289 glbfval 18302 isclat 18441 issubmgm 18611 issubm 18712 issubg 19040 cntzfval 19234 lsmfval 19552 lsmpropd 19591 pj1fval 19608 issubrng 20467 issubrg 20491 rgspnval 20532 lssset 20871 lspfval 20911 lsppropd 20957 islbs 21015 sraval 21114 ocvfval 21608 isobs 21662 islinds 21751 aspval 21815 opsrval 21986 ply1frcl 22238 evls1fval 22239 basis1 22870 baspartn 22874 cldval 22943 ntrfval 22944 clsfval 22945 mretopd 23012 neifval 23019 lpfval 23058 cncls2 23193 iscnrm 23243 iscnrm2 23258 2ndcsep 23379 kgenval 23455 xkoval 23507 dfac14 23538 qtopval 23615 qtopval2 23616 isfbas 23749 trfbas2 23763 flimval 23883 elflim 23891 flimclslem 23904 fclsfnflim 23947 fclscmp 23950 tsmsfbas 24048 tsmsval2 24050 ustval 24123 utopval 24153 mopnfss 24364 setsmstopn 24399 met2ndc 24444 madeval 27797 elmade2 27817 istrkgb 28435 isuhgr 29040 isushgr 29041 isuhgrop 29050 uhgrun 29054 uhgrstrrepe 29058 isupgr 29064 upgrop 29074 isumgr 29075 upgrun 29098 umgrun 29100 isuspgr 29132 isusgr 29133 isuspgrop 29141 isusgrop 29142 ausgrusgrb 29145 usgrstrrepe 29215 issubgr 29251 uhgrspansubgrlem 29270 usgrexi 29421 1hevtxdg1 29487 umgr2v2e 29506 zarcmplem 33864 ismeas 34182 omsval 34277 omscl 34279 omsf 34280 oms0 34281 carsgval 34287 omsmeas 34307 erdszelem3 35173 erdsze 35182 kur14 35196 iscvm 35239 mpstval 35515 mclsval 35543 bj-imdirvallem 37161 pibp21 37396 heibor 37808 idlval 38000 igenval 38048 paddfval 39784 pclfvalN 39876 polfvalN 39891 docaffvalN 41108 docafvalN 41109 djaffvalN 41120 djafvalN 41121 dochffval 41336 dochfval 41337 djhffval 41383 djhfval 41384 lpolsetN 41469 lcdlss2N 41607 mzpclval 42706 dfac21 43048 islmodfg 43051 islssfg 43052 rfovd 43983 fsovrfovd 43991 gneispace2 44114 ismnu 44243 sge0val 46357 ismea 46442 psmeasure 46462 caragenval 46484 isome 46485 omeunile 46496 isomennd 46522 ovnval 46532 hspmbl 46620 isvonmbl 46629 afv2eq12d 47209 isisubgr 47855 isubgruhgr 47861 stgrfv 47945 stgrusgra 47951 gpgov 48026 gpgusgra 48041 lincop 48390 lcoop 48393 islininds 48428 ldepsnlinc 48490 isclatd 48964 |
| Copyright terms: Public domain | W3C validator |