Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4501 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 𝒫 cpw 4485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-in 3848 df-ss 3858 df-pw 4487 |
This theorem is referenced by: undefval 7964 pmvalg 8441 marypha1lem 8963 marypha1 8964 r1val3 9333 ackbij2lem2 9733 ackbij2lem3 9734 r1om 9737 isfin2 9787 hsmexlem8 9917 vdwmc 16407 hashbcval 16431 ismre 16957 mrcfval 16975 mrisval 16997 mreexexlemd 17011 brssc 17182 lubfval 17697 glbfval 17710 isclat 17828 issubm 18077 issubg 18390 cntzfval 18561 lsmfval 18874 lsmpropd 18914 pj1fval 18931 issubrg 19647 lssset 19817 lspfval 19857 lsppropd 19902 islbs 19960 sraval 20060 ocvfval 20475 isobs 20529 islinds 20618 aspval 20679 opsrval 20850 ply1frcl 21081 evls1fval 21082 basis1 21694 baspartn 21698 cldval 21767 ntrfval 21768 clsfval 21769 mretopd 21836 neifval 21843 lpfval 21882 cncls2 22017 iscnrm 22067 iscnrm2 22082 2ndcsep 22203 kgenval 22279 xkoval 22331 dfac14 22362 qtopval 22439 qtopval2 22440 isfbas 22573 trfbas2 22587 flimval 22707 elflim 22715 flimclslem 22728 fclsfnflim 22771 fclscmp 22774 tsmsfbas 22872 tsmsval2 22874 ustval 22947 utopval 22977 mopnfss 23189 setsmstopn 23224 met2ndc 23269 istrkgb 26393 isuhgr 26997 isushgr 26998 isuhgrop 27007 uhgrun 27011 uhgrstrrepe 27015 isupgr 27021 upgrop 27031 isumgr 27032 upgrun 27055 umgrun 27057 isuspgr 27089 isusgr 27090 isuspgrop 27098 isusgrop 27099 ausgrusgrb 27102 usgrstrrepe 27169 issubgr 27205 uhgrspansubgrlem 27224 usgrexi 27375 1hevtxdg1 27440 umgr2v2e 27459 zarcmplem 31395 ismeas 31729 omsval 31822 omscl 31824 omsf 31825 oms0 31826 carsgval 31832 omsmeas 31852 erdszelem3 32718 erdsze 32727 kur14 32741 iscvm 32784 mpstval 33060 mclsval 33088 madeval 33669 elmade2 33681 bj-imdirvallem 34961 pibp21 35198 heibor 35591 idlval 35783 igenval 35831 paddfval 37423 pclfvalN 37515 polfvalN 37530 docaffvalN 38747 docafvalN 38748 djaffvalN 38759 djafvalN 38760 dochffval 38975 dochfval 38976 djhffval 39022 djhfval 39023 lpolsetN 39108 lcdlss2N 39246 mzpclval 40103 dfac21 40447 islmodfg 40450 islssfg 40451 rgspnval 40549 rfovd 41139 fsovrfovd 41147 gneispace2 41272 ismnu 41405 sge0val 43430 ismea 43515 psmeasure 43535 caragenval 43557 isome 43558 omeunile 43569 isomennd 43595 ovnval 43605 hspmbl 43693 isvonmbl 43702 afv2eq12d 44224 issubmgm 44861 lincop 45267 lcoop 45270 islininds 45305 ldepsnlinc 45367 |
Copyright terms: Public domain | W3C validator |