![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4381 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 𝒫 cpw 4378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-in 3805 df-ss 3812 df-pw 4380 |
This theorem is referenced by: undefval 7667 pmvalg 8133 marypha1lem 8608 marypha1 8609 r1val3 8978 ackbij2lem2 9377 ackbij2lem3 9378 r1om 9381 isfin2 9431 hsmexlem8 9561 vdwmc 16053 hashbcval 16077 ismre 16603 mrcfval 16621 mrisval 16643 mreexexlemd 16657 brssc 16826 lubfval 17331 glbfval 17344 isclat 17462 issubm 17700 issubg 17945 cntzfval 18103 symgval 18149 lsmfval 18404 lsmpropd 18441 pj1fval 18458 issubrg 19136 lssset 19290 lspfval 19332 lsppropd 19377 islbs 19435 sraval 19537 aspval 19689 opsrval 19835 ply1frcl 20043 evls1fval 20044 ocvfval 20373 isobs 20427 islinds 20515 basis1 21125 baspartn 21129 cldval 21198 ntrfval 21199 clsfval 21200 mretopd 21267 neifval 21274 lpfval 21313 cncls2 21448 iscnrm 21498 iscnrm2 21513 2ndcsep 21633 kgenval 21709 xkoval 21761 dfac14 21792 qtopval 21869 qtopval2 21870 isfbas 22003 trfbas2 22017 flimval 22137 elflim 22145 flimclslem 22158 fclsfnflim 22201 fclscmp 22204 tsmsfbas 22301 tsmsval2 22303 ustval 22376 utopval 22406 mopnfss 22618 setsmstopn 22653 met2ndc 22698 istrkgb 25767 isuhgr 26358 isushgr 26359 isuhgrop 26368 uhgrun 26372 uhgrstrrepe 26376 isupgr 26382 upgrop 26392 isumgr 26393 upgrun 26416 umgrun 26418 isuspgr 26451 isusgr 26452 isuspgrop 26460 isusgrop 26461 ausgrusgrb 26464 usgrstrrepe 26532 issubgr 26568 uhgrspansubgrlem 26587 usgrexi 26739 1hevtxdg1 26804 umgr2v2e 26823 ismeas 30807 omsval 30900 omscl 30902 omsf 30903 oms0 30904 carsgval 30910 omsmeas 30930 erdszelem3 31721 erdsze 31730 kur14 31744 iscvm 31787 mpstval 31978 mclsval 32006 madeval 32474 heibor 34162 idlval 34354 igenval 34402 paddfval 35872 pclfvalN 35964 polfvalN 35979 docaffvalN 37196 docafvalN 37197 djaffvalN 37208 djafvalN 37209 dochffval 37424 dochfval 37425 djhffval 37471 djhfval 37472 lpolsetN 37557 lcdlss2N 37695 mzpclval 38132 dfac21 38479 islmodfg 38482 islssfg 38483 rgspnval 38581 rfovd 39135 fsovrfovd 39143 gneispace2 39270 sge0val 41374 ismea 41459 psmeasure 41479 caragenval 41501 isome 41502 omeunile 41513 isomennd 41539 ovnval 41549 hspmbl 41637 isvonmbl 41646 afv2eq12d 42117 issubmgm 42636 lincop 43044 lcoop 43047 islininds 43082 ldepsnlinc 43144 |
Copyright terms: Public domain | W3C validator |