| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 4577 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: undefval 8255 pmvalg 8810 marypha1lem 9384 marypha1 9385 r1val3 9791 ackbij2lem2 10192 ackbij2lem3 10193 r1om 10196 isfin2 10247 hsmexlem8 10377 vdwmc 16949 hashbcval 16973 ismre 17551 mrcfval 17569 mrisval 17591 mreexexlemd 17605 brssc 17776 lubfval 18309 glbfval 18322 isclat 18459 issubmgm 18629 issubm 18730 issubg 19058 cntzfval 19252 lsmfval 19568 lsmpropd 19607 pj1fval 19624 issubrng 20456 issubrg 20480 rgspnval 20521 lssset 20839 lspfval 20879 lsppropd 20925 islbs 20983 sraval 21082 ocvfval 21575 isobs 21629 islinds 21718 aspval 21782 opsrval 21953 ply1frcl 22205 evls1fval 22206 basis1 22837 baspartn 22841 cldval 22910 ntrfval 22911 clsfval 22912 mretopd 22979 neifval 22986 lpfval 23025 cncls2 23160 iscnrm 23210 iscnrm2 23225 2ndcsep 23346 kgenval 23422 xkoval 23474 dfac14 23505 qtopval 23582 qtopval2 23583 isfbas 23716 trfbas2 23730 flimval 23850 elflim 23858 flimclslem 23871 fclsfnflim 23914 fclscmp 23917 tsmsfbas 24015 tsmsval2 24017 ustval 24090 utopval 24120 mopnfss 24331 setsmstopn 24366 met2ndc 24411 madeval 27760 elmade2 27780 istrkgb 28382 isuhgr 28987 isushgr 28988 isuhgrop 28997 uhgrun 29001 uhgrstrrepe 29005 isupgr 29011 upgrop 29021 isumgr 29022 upgrun 29045 umgrun 29047 isuspgr 29079 isusgr 29080 isuspgrop 29088 isusgrop 29089 ausgrusgrb 29092 usgrstrrepe 29162 issubgr 29198 uhgrspansubgrlem 29217 usgrexi 29368 1hevtxdg1 29434 umgr2v2e 29453 zarcmplem 33871 ismeas 34189 omsval 34284 omscl 34286 omsf 34287 oms0 34288 carsgval 34294 omsmeas 34314 erdszelem3 35180 erdsze 35189 kur14 35203 iscvm 35246 mpstval 35522 mclsval 35550 bj-imdirvallem 37168 pibp21 37403 heibor 37815 idlval 38007 igenval 38055 paddfval 39791 pclfvalN 39883 polfvalN 39898 docaffvalN 41115 docafvalN 41116 djaffvalN 41127 djafvalN 41128 dochffval 41343 dochfval 41344 djhffval 41390 djhfval 41391 lpolsetN 41476 lcdlss2N 41614 mzpclval 42713 dfac21 43055 islmodfg 43058 islssfg 43059 rfovd 43990 fsovrfovd 43998 gneispace2 44121 ismnu 44250 sge0val 46364 ismea 46449 psmeasure 46469 caragenval 46491 isome 46492 omeunile 46503 isomennd 46529 ovnval 46539 hspmbl 46627 isvonmbl 46636 afv2eq12d 47216 isisubgr 47862 isubgruhgr 47868 stgrfv 47952 stgrusgra 47958 gpgov 48033 gpgusgra 48048 lincop 48397 lcoop 48400 islininds 48435 ldepsnlinc 48497 isclatd 48971 |
| Copyright terms: Public domain | W3C validator |