![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4636 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: undefval 8317 pmvalg 8895 marypha1lem 9502 marypha1 9503 r1val3 9907 ackbij2lem2 10308 ackbij2lem3 10309 r1om 10312 isfin2 10363 hsmexlem8 10493 vdwmc 17025 hashbcval 17049 ismre 17648 mrcfval 17666 mrisval 17688 mreexexlemd 17702 brssc 17875 lubfval 18420 glbfval 18433 isclat 18570 issubmgm 18740 issubm 18838 issubg 19166 cntzfval 19360 lsmfval 19680 lsmpropd 19719 pj1fval 19736 issubrng 20573 issubrg 20599 lssset 20954 lspfval 20994 lsppropd 21040 islbs 21098 sraval 21197 ocvfval 21707 isobs 21763 islinds 21852 aspval 21916 opsrval 22087 ply1frcl 22343 evls1fval 22344 basis1 22978 baspartn 22982 cldval 23052 ntrfval 23053 clsfval 23054 mretopd 23121 neifval 23128 lpfval 23167 cncls2 23302 iscnrm 23352 iscnrm2 23367 2ndcsep 23488 kgenval 23564 xkoval 23616 dfac14 23647 qtopval 23724 qtopval2 23725 isfbas 23858 trfbas2 23872 flimval 23992 elflim 24000 flimclslem 24013 fclsfnflim 24056 fclscmp 24059 tsmsfbas 24157 tsmsval2 24159 ustval 24232 utopval 24262 mopnfss 24474 setsmstopn 24511 met2ndc 24557 madeval 27909 elmade2 27925 istrkgb 28481 isuhgr 29095 isushgr 29096 isuhgrop 29105 uhgrun 29109 uhgrstrrepe 29113 isupgr 29119 upgrop 29129 isumgr 29130 upgrun 29153 umgrun 29155 isuspgr 29187 isusgr 29188 isuspgrop 29196 isusgrop 29197 ausgrusgrb 29200 usgrstrrepe 29270 issubgr 29306 uhgrspansubgrlem 29325 usgrexi 29476 1hevtxdg1 29542 umgr2v2e 29561 zarcmplem 33827 ismeas 34163 omsval 34258 omscl 34260 omsf 34261 oms0 34262 carsgval 34268 omsmeas 34288 erdszelem3 35161 erdsze 35170 kur14 35184 iscvm 35227 mpstval 35503 mclsval 35531 bj-imdirvallem 37146 pibp21 37381 heibor 37781 idlval 37973 igenval 38021 paddfval 39754 pclfvalN 39846 polfvalN 39861 docaffvalN 41078 docafvalN 41079 djaffvalN 41090 djafvalN 41091 dochffval 41306 dochfval 41307 djhffval 41353 djhfval 41354 lpolsetN 41439 lcdlss2N 41577 mzpclval 42681 dfac21 43023 islmodfg 43026 islssfg 43027 rgspnval 43125 rfovd 43963 fsovrfovd 43971 gneispace2 44094 ismnu 44230 sge0val 46287 ismea 46372 psmeasure 46392 caragenval 46414 isome 46415 omeunile 46426 isomennd 46452 ovnval 46462 hspmbl 46550 isvonmbl 46559 afv2eq12d 47130 isisubgr 47734 isubgruhgr 47738 lincop 48137 lcoop 48140 islininds 48175 ldepsnlinc 48237 isclatd 48655 |
Copyright terms: Public domain | W3C validator |