| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 4589 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: undefval 8273 pmvalg 8849 marypha1lem 9443 marypha1 9444 r1val3 9850 ackbij2lem2 10251 ackbij2lem3 10252 r1om 10255 isfin2 10306 hsmexlem8 10436 vdwmc 16996 hashbcval 17020 ismre 17600 mrcfval 17618 mrisval 17640 mreexexlemd 17654 brssc 17825 lubfval 18358 glbfval 18371 isclat 18508 issubmgm 18678 issubm 18779 issubg 19107 cntzfval 19301 lsmfval 19617 lsmpropd 19656 pj1fval 19673 issubrng 20505 issubrg 20529 rgspnval 20570 lssset 20888 lspfval 20928 lsppropd 20974 islbs 21032 sraval 21131 ocvfval 21624 isobs 21678 islinds 21767 aspval 21831 opsrval 22002 ply1frcl 22254 evls1fval 22255 basis1 22886 baspartn 22890 cldval 22959 ntrfval 22960 clsfval 22961 mretopd 23028 neifval 23035 lpfval 23074 cncls2 23209 iscnrm 23259 iscnrm2 23274 2ndcsep 23395 kgenval 23471 xkoval 23523 dfac14 23554 qtopval 23631 qtopval2 23632 isfbas 23765 trfbas2 23779 flimval 23899 elflim 23907 flimclslem 23920 fclsfnflim 23963 fclscmp 23966 tsmsfbas 24064 tsmsval2 24066 ustval 24139 utopval 24169 mopnfss 24380 setsmstopn 24415 met2ndc 24460 madeval 27808 elmade2 27824 istrkgb 28380 isuhgr 28985 isushgr 28986 isuhgrop 28995 uhgrun 28999 uhgrstrrepe 29003 isupgr 29009 upgrop 29019 isumgr 29020 upgrun 29043 umgrun 29045 isuspgr 29077 isusgr 29078 isuspgrop 29086 isusgrop 29087 ausgrusgrb 29090 usgrstrrepe 29160 issubgr 29196 uhgrspansubgrlem 29215 usgrexi 29366 1hevtxdg1 29432 umgr2v2e 29451 zarcmplem 33858 ismeas 34176 omsval 34271 omscl 34273 omsf 34274 oms0 34275 carsgval 34281 omsmeas 34301 erdszelem3 35161 erdsze 35170 kur14 35184 iscvm 35227 mpstval 35503 mclsval 35531 bj-imdirvallem 37144 pibp21 37379 heibor 37791 idlval 37983 igenval 38031 paddfval 39762 pclfvalN 39854 polfvalN 39869 docaffvalN 41086 docafvalN 41087 djaffvalN 41098 djafvalN 41099 dochffval 41314 dochfval 41315 djhffval 41361 djhfval 41362 lpolsetN 41447 lcdlss2N 41585 mzpclval 42695 dfac21 43037 islmodfg 43040 islssfg 43041 rfovd 43972 fsovrfovd 43980 gneispace2 44103 ismnu 44233 sge0val 46343 ismea 46428 psmeasure 46448 caragenval 46470 isome 46471 omeunile 46482 isomennd 46508 ovnval 46518 hspmbl 46606 isvonmbl 46615 afv2eq12d 47192 isisubgr 47823 isubgruhgr 47829 stgrfv 47913 stgrusgra 47919 gpgov 47994 gpgusgra 48009 lincop 48332 lcoop 48335 islininds 48370 ldepsnlinc 48432 isclatd 48905 |
| Copyright terms: Public domain | W3C validator |