| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 4565 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: undefval 8209 pmvalg 8764 marypha1lem 9323 marypha1 9324 r1val3 9734 ackbij2lem2 10133 ackbij2lem3 10134 r1om 10137 isfin2 10188 hsmexlem8 10318 vdwmc 16890 hashbcval 16914 ismre 17492 mrcfval 17514 mrisval 17536 mreexexlemd 17550 brssc 17721 lubfval 18254 glbfval 18267 isclat 18406 issubmgm 18576 issubm 18677 issubg 19005 cntzfval 19199 lsmfval 19517 lsmpropd 19556 pj1fval 19573 issubrng 20432 issubrg 20456 rgspnval 20497 lssset 20836 lspfval 20876 lsppropd 20922 islbs 20980 sraval 21079 ocvfval 21573 isobs 21627 islinds 21716 aspval 21780 opsrval 21951 ply1frcl 22203 evls1fval 22204 basis1 22835 baspartn 22839 cldval 22908 ntrfval 22909 clsfval 22910 mretopd 22977 neifval 22984 lpfval 23023 cncls2 23158 iscnrm 23208 iscnrm2 23223 2ndcsep 23344 kgenval 23420 xkoval 23472 dfac14 23503 qtopval 23580 qtopval2 23581 isfbas 23714 trfbas2 23728 flimval 23848 elflim 23856 flimclslem 23869 fclsfnflim 23912 fclscmp 23915 tsmsfbas 24013 tsmsval2 24015 ustval 24088 utopval 24118 mopnfss 24329 setsmstopn 24364 met2ndc 24409 madeval 27762 elmade2 27782 istrkgb 28400 isuhgr 29005 isushgr 29006 isuhgrop 29015 uhgrun 29019 uhgrstrrepe 29023 isupgr 29029 upgrop 29039 isumgr 29040 upgrun 29063 umgrun 29065 isuspgr 29097 isusgr 29098 isuspgrop 29106 isusgrop 29107 ausgrusgrb 29110 usgrstrrepe 29180 issubgr 29216 uhgrspansubgrlem 29235 usgrexi 29386 1hevtxdg1 29452 umgr2v2e 29471 zarcmplem 33848 ismeas 34166 omsval 34261 omscl 34263 omsf 34264 oms0 34265 carsgval 34271 omsmeas 34291 erdszelem3 35170 erdsze 35179 kur14 35193 iscvm 35236 mpstval 35512 mclsval 35540 bj-imdirvallem 37158 pibp21 37393 heibor 37805 idlval 37997 igenval 38045 paddfval 39780 pclfvalN 39872 polfvalN 39887 docaffvalN 41104 docafvalN 41105 djaffvalN 41116 djafvalN 41117 dochffval 41332 dochfval 41333 djhffval 41379 djhfval 41380 lpolsetN 41465 lcdlss2N 41603 mzpclval 42702 dfac21 43043 islmodfg 43046 islssfg 43047 rfovd 43978 fsovrfovd 43986 gneispace2 44109 ismnu 44238 sge0val 46351 ismea 46436 psmeasure 46456 caragenval 46478 isome 46479 omeunile 46490 isomennd 46516 ovnval 46526 hspmbl 46614 isvonmbl 46623 afv2eq12d 47203 isisubgr 47850 isubgruhgr 47856 stgrfv 47941 stgrusgra 47947 gpgov 48030 gpgusgra 48045 lincop 48397 lcoop 48400 islininds 48435 ldepsnlinc 48497 isclatd 48971 |
| Copyright terms: Public domain | W3C validator |