MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspwi Structured version   Visualization version   GIF version

Theorem sspwi 4571
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.)
Hypothesis
Ref Expression
sspwi.1 𝐴𝐵
Assertion
Ref Expression
sspwi 𝒫 𝐴 ⊆ 𝒫 𝐵

Proof of Theorem sspwi
StepHypRef Expression
1 sspwi.1 . 2 𝐴𝐵
2 sspw 4570 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2ax-mp 5 1 𝒫 𝐴 ⊆ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3911  𝒫 cpw 4559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-pw 4561
This theorem is referenced by:  pwunss  4577  pwundif  4583  pwdom  9070  wdompwdom  9507  rankxplim  9808  hashbclem  14393  incexclem  15778  sscpwex  17753  wunfunc  17839  tsmsres  24007  cfilresi  25171  vitali  25490  sqff1o  27068  ldgenpisyslem1  34126  imambfm  34226  ballotlem2  34453  dssmapnvod  43982  gneispace  44096  sge0less  46363
  Copyright terms: Public domain W3C validator