![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sspw 4617 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3964 𝒫 cpw 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3981 df-pw 4608 |
This theorem is referenced by: pwunss 4624 pwundif 4630 pwdom 9174 wdompwdom 9622 rankxplim 9923 hashbclem 14494 incexclem 15875 sscpwex 17869 wunfunc 17958 wunfuncOLD 17959 tsmsres 24174 cfilresi 25351 vitali 25670 sqff1o 27248 ldgenpisyslem1 34157 imambfm 34257 ballotlem2 34483 dssmapnvod 44024 gneispace 44138 sge0less 46359 |
Copyright terms: Public domain | W3C validator |