MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspwi Structured version   Visualization version   GIF version

Theorem sspwi 4618
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.)
Hypothesis
Ref Expression
sspwi.1 𝐴𝐵
Assertion
Ref Expression
sspwi 𝒫 𝐴 ⊆ 𝒫 𝐵

Proof of Theorem sspwi
StepHypRef Expression
1 sspwi.1 . 2 𝐴𝐵
2 sspw 4617 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2ax-mp 5 1 𝒫 𝐴 ⊆ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3964  𝒫 cpw 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-ss 3981  df-pw 4608
This theorem is referenced by:  pwunss  4624  pwundif  4630  pwdom  9174  wdompwdom  9622  rankxplim  9923  hashbclem  14494  incexclem  15875  sscpwex  17869  wunfunc  17958  wunfuncOLD  17959  tsmsres  24174  cfilresi  25351  vitali  25670  sqff1o  27248  ldgenpisyslem1  34157  imambfm  34257  ballotlem2  34483  dssmapnvod  44024  gneispace  44138  sge0less  46359
  Copyright terms: Public domain W3C validator