| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sspw 4574 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: pwunss 4581 pwundif 4587 pwdom 9093 wdompwdom 9531 rankxplim 9832 hashbclem 14417 incexclem 15802 sscpwex 17777 wunfunc 17863 tsmsres 24031 cfilresi 25195 vitali 25514 sqff1o 27092 ldgenpisyslem1 34153 imambfm 34253 ballotlem2 34480 dssmapnvod 44009 gneispace 44123 sge0less 46390 |
| Copyright terms: Public domain | W3C validator |