Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sspw 4543 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pwunss 4550 pwundif 4556 pwdom 8865 wdompwdom 9267 rankxplim 9568 hashbclem 14092 incexclem 15476 sscpwex 17444 wunfunc 17530 wunfuncOLD 17531 tsmsres 23203 cfilresi 24364 vitali 24682 sqff1o 26236 ldgenpisyslem1 32031 imambfm 32129 ballotlem2 32355 dssmapnvod 41517 gneispace 41633 sge0less 43820 |
Copyright terms: Public domain | W3C validator |