![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sspw 4633 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pwunss 4640 pwundif 4646 pwdom 9195 wdompwdom 9647 rankxplim 9948 hashbclem 14501 incexclem 15884 sscpwex 17876 wunfunc 17965 wunfuncOLD 17966 tsmsres 24173 cfilresi 25348 vitali 25667 sqff1o 27243 ldgenpisyslem1 34127 imambfm 34227 ballotlem2 34453 dssmapnvod 43982 gneispace 44096 sge0less 46313 |
Copyright terms: Public domain | W3C validator |