Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sspw 4546 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: pwunss 4553 pwundif 4559 pwdom 8916 wdompwdom 9337 rankxplim 9637 hashbclem 14164 incexclem 15548 sscpwex 17527 wunfunc 17614 wunfuncOLD 17615 tsmsres 23295 cfilresi 24459 vitali 24777 sqff1o 26331 ldgenpisyslem1 32131 imambfm 32229 ballotlem2 32455 dssmapnvod 41628 gneispace 41744 sge0less 43930 |
Copyright terms: Public domain | W3C validator |