MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspwi Structured version   Visualization version   GIF version

Theorem sspwi 4559
Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.)
Hypothesis
Ref Expression
sspwi.1 𝐴𝐵
Assertion
Ref Expression
sspwi 𝒫 𝐴 ⊆ 𝒫 𝐵

Proof of Theorem sspwi
StepHypRef Expression
1 sspwi.1 . 2 𝐴𝐵
2 sspw 4558 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2ax-mp 5 1 𝒫 𝐴 ⊆ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3897  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-pw 4549
This theorem is referenced by:  pwunss  4565  pwundif  4571  pwdom  9042  wdompwdom  9464  rankxplim  9772  hashbclem  14359  incexclem  15743  sscpwex  17722  wunfunc  17808  tsmsres  24059  cfilresi  25222  vitali  25541  sqff1o  27119  ldgenpisyslem1  34176  imambfm  34275  ballotlem2  34502  dssmapnvod  44061  gneispace  44175  sge0less  46438
  Copyright terms: Public domain W3C validator