| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sspw 4558 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: pwunss 4565 pwundif 4571 pwdom 9042 wdompwdom 9464 rankxplim 9772 hashbclem 14359 incexclem 15743 sscpwex 17722 wunfunc 17808 tsmsres 24059 cfilresi 25222 vitali 25541 sqff1o 27119 ldgenpisyslem1 34176 imambfm 34275 ballotlem2 34502 dssmapnvod 44061 gneispace 44175 sge0less 46438 |
| Copyright terms: Public domain | W3C validator |