| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sspw 4570 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: pwunss 4577 pwundif 4583 pwdom 9070 wdompwdom 9507 rankxplim 9808 hashbclem 14393 incexclem 15778 sscpwex 17753 wunfunc 17839 tsmsres 24007 cfilresi 25171 vitali 25490 sqff1o 27068 ldgenpisyslem1 34126 imambfm 34226 ballotlem2 34453 dssmapnvod 43982 gneispace 44096 sge0less 46363 |
| Copyright terms: Public domain | W3C validator |