| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwi | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (inference form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sspw 4562 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: pwunss 4569 pwundif 4575 pwdom 9046 wdompwdom 9470 rankxplim 9775 hashbclem 14359 incexclem 15743 sscpwex 17722 wunfunc 17808 tsmsres 24029 cfilresi 25193 vitali 25512 sqff1o 27090 ldgenpisyslem1 34130 imambfm 34230 ballotlem2 34457 dssmapnvod 43993 gneispace 44107 sge0less 46373 |
| Copyright terms: Public domain | W3C validator |