![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 463 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
4 | unss 4044 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
5 | 3, 4 | mpbi 222 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 ∪ cun 3823 ⊆ wss 3825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-v 3411 df-un 3830 df-in 3832 df-ss 3839 |
This theorem is referenced by: dmrnssfld 5676 tc2 8970 djuunxp 9136 pwxpndom2 9877 ltrelxr 10494 nn0ssre 11704 nn0sscn 11705 nn0ssz 11809 dfle2 12350 difreicc 12679 hashxrcl 13526 ramxrcl 16199 strleun 16437 cssincl 20524 leordtval2 21514 lecldbas 21521 comppfsc 21834 aalioulem2 24615 taylfval 24640 axlowdimlem10 26430 shunssji 28917 shsval3i 28936 shjshsi 29040 spanuni 29092 sshhococi 29094 esumcst 30923 hashf2 30944 sxbrsigalem3 31132 signswch 31438 bj-unrab 33679 bj-tagss 33745 poimirlem16 34297 poimirlem19 34300 poimirlem23 34304 poimirlem29 34310 poimirlem31 34312 poimirlem32 34313 mblfinlem3 34320 mblfinlem4 34321 hdmapevec 38364 rtrclex 39285 trclexi 39288 rtrclexi 39289 cnvrcl0 39293 cnvtrcl0 39294 comptiunov2i 39359 cotrclrcl 39395 cncfiooicclem1 41552 fourierdlem62 41830 |
Copyright terms: Public domain | W3C validator |