Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 471 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
4 | unss 4119 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∪ cun 3886 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-un 3893 df-in 3895 df-ss 3905 |
This theorem is referenced by: pwunss 4554 dmrnssfld 5882 tc2 9509 djuunxp 9688 pwxpndom2 10430 ltrelxr 11045 nn0ssre 12246 nn0sscn 12247 nn0ssz 12350 dfle2 12890 difreicc 13225 hashxrcl 14081 ramxrcl 16727 strleun 16867 cssincl 20902 leordtval2 22372 lecldbas 22379 comppfsc 22692 aalioulem2 25502 taylfval 25527 axlowdimlem10 27328 shunssji 29740 shsval3i 29759 shjshsi 29863 spanuni 29915 sshhococi 29917 esumcst 32040 hashf2 32061 sxbrsigalem3 32248 signswch 32549 bj-unrab 35123 bj-tagss 35179 bj-imdirco 35370 poimirlem16 35802 poimirlem19 35805 poimirlem23 35809 poimirlem29 35815 poimirlem31 35817 poimirlem32 35818 mblfinlem3 35825 mblfinlem4 35826 hdmapevec 39856 rtrclex 41232 trclexi 41235 rtrclexi 41236 cnvrcl0 41240 cnvtrcl0 41241 comptiunov2i 41321 cotrclrcl 41357 cncfiooicclem1 43441 fourierdlem62 43716 |
Copyright terms: Public domain | W3C validator |