Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 471 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
4 | unss 4128 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∪ cun 3894 ⊆ wss 3896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3442 df-un 3901 df-in 3903 df-ss 3913 |
This theorem is referenced by: pwunss 4562 dmrnssfld 5898 tc2 9577 djuunxp 9756 pwxpndom2 10500 ltrelxr 11115 nn0ssre 12316 nn0sscn 12317 nn0ssz 12420 dfle2 12960 difreicc 13295 hashxrcl 14150 ramxrcl 16792 strleun 16932 cssincl 20973 leordtval2 22443 lecldbas 22450 comppfsc 22763 aalioulem2 25573 taylfval 25598 axlowdimlem10 27452 shunssji 29863 shsval3i 29882 shjshsi 29986 spanuni 30038 sshhococi 30040 esumcst 32167 hashf2 32188 sxbrsigalem3 32375 signswch 32676 bj-unrab 35183 bj-tagss 35238 bj-imdirco 35438 poimirlem16 35870 poimirlem19 35873 poimirlem23 35877 poimirlem29 35883 poimirlem31 35885 poimirlem32 35886 mblfinlem3 35893 mblfinlem4 35894 hdmapevec 40075 rtrclex 41464 trclexi 41467 rtrclexi 41468 cnvrcl0 41472 cnvtrcl0 41473 comptiunov2i 41553 cotrclrcl 41589 cncfiooicclem1 43689 fourierdlem62 43964 |
Copyright terms: Public domain | W3C validator |