| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version | ||
| Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
| unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
| 4 | unss 4156 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∪ cun 3915 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 |
| This theorem is referenced by: pwunss 4584 dmrnssfld 5940 tc2 9702 djuunxp 9881 pwxpndom2 10625 ltrelxr 11242 nn0ssre 12453 nn0sscn 12454 nn0ssz 12559 dfle2 13114 difreicc 13452 hashxrcl 14329 ramxrcl 16995 strleun 17134 cssincl 21604 leordtval2 23106 lecldbas 23113 comppfsc 23426 aalioulem2 26248 taylfval 26273 addsbdaylem 27930 addsbday 27931 addsdilem3 28063 addsdilem4 28064 mulsasslem3 28075 onscutlt 28172 axlowdimlem10 28885 shunssji 31305 shsval3i 31324 shjshsi 31428 spanuni 31480 sshhococi 31482 esumcst 34060 hashf2 34081 sxbrsigalem3 34270 signswch 34559 bj-unrab 36921 bj-tagss 36975 bj-imdirco 37185 poimirlem16 37637 poimirlem19 37640 poimirlem23 37644 poimirlem29 37650 poimirlem31 37652 poimirlem32 37653 mblfinlem3 37660 mblfinlem4 37661 hdmapevec 41836 rtrclex 43613 trclexi 43616 rtrclexi 43617 cnvrcl0 43621 cnvtrcl0 43622 comptiunov2i 43702 cotrclrcl 43738 cncfiooicclem1 45898 fourierdlem62 46173 |
| Copyright terms: Public domain | W3C validator |