| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version | ||
| Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
| unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
| 4 | unss 4149 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∪ cun 3909 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 |
| This theorem is referenced by: pwunss 4577 dmrnssfld 5926 tc2 9671 djuunxp 9850 pwxpndom2 10594 ltrelxr 11211 nn0ssre 12422 nn0sscn 12423 nn0ssz 12528 dfle2 13083 difreicc 13421 hashxrcl 14298 ramxrcl 16964 strleun 17103 cssincl 21630 leordtval2 23132 lecldbas 23139 comppfsc 23452 aalioulem2 26274 taylfval 26299 addsbdaylem 27963 addsbday 27964 addsdilem3 28096 addsdilem4 28097 mulsasslem3 28108 onscutlt 28205 axlowdimlem10 28931 shunssji 31348 shsval3i 31367 shjshsi 31471 spanuni 31523 sshhococi 31525 esumcst 34046 hashf2 34067 sxbrsigalem3 34256 signswch 34545 bj-unrab 36907 bj-tagss 36961 bj-imdirco 37171 poimirlem16 37623 poimirlem19 37626 poimirlem23 37630 poimirlem29 37636 poimirlem31 37638 poimirlem32 37639 mblfinlem3 37646 mblfinlem4 37647 hdmapevec 41822 rtrclex 43599 trclexi 43602 rtrclexi 43603 cnvrcl0 43607 cnvtrcl0 43608 comptiunov2i 43688 cotrclrcl 43724 cncfiooicclem1 45884 fourierdlem62 46159 |
| Copyright terms: Public domain | W3C validator |