| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version | ||
| Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
| unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
| 4 | unss 4165 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∪ cun 3924 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 |
| This theorem is referenced by: pwunss 4593 dmrnssfld 5953 tc2 9756 djuunxp 9935 pwxpndom2 10679 ltrelxr 11296 nn0ssre 12505 nn0sscn 12506 nn0ssz 12611 dfle2 13163 difreicc 13501 hashxrcl 14375 ramxrcl 17037 strleun 17176 cssincl 21648 leordtval2 23150 lecldbas 23157 comppfsc 23470 aalioulem2 26293 taylfval 26318 addsbdaylem 27975 addsbday 27976 addsdilem3 28108 addsdilem4 28109 mulsasslem3 28120 onscutlt 28217 axlowdimlem10 28930 shunssji 31350 shsval3i 31369 shjshsi 31473 spanuni 31525 sshhococi 31527 esumcst 34094 hashf2 34115 sxbrsigalem3 34304 signswch 34593 bj-unrab 36944 bj-tagss 36998 bj-imdirco 37208 poimirlem16 37660 poimirlem19 37663 poimirlem23 37667 poimirlem29 37673 poimirlem31 37675 poimirlem32 37676 mblfinlem3 37683 mblfinlem4 37684 hdmapevec 41854 rtrclex 43641 trclexi 43644 rtrclexi 43645 cnvrcl0 43649 cnvtrcl0 43650 comptiunov2i 43730 cotrclrcl 43766 cncfiooicclem1 45922 fourierdlem62 46197 |
| Copyright terms: Public domain | W3C validator |