Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
4 | unss 4114 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: pwunss 4550 dmrnssfld 5868 tc2 9431 djuunxp 9610 pwxpndom2 10352 ltrelxr 10967 nn0ssre 12167 nn0sscn 12168 nn0ssz 12271 dfle2 12810 difreicc 13145 hashxrcl 14000 ramxrcl 16646 strleun 16786 cssincl 20805 leordtval2 22271 lecldbas 22278 comppfsc 22591 aalioulem2 25398 taylfval 25423 axlowdimlem10 27222 shunssji 29632 shsval3i 29651 shjshsi 29755 spanuni 29807 sshhococi 29809 esumcst 31931 hashf2 31952 sxbrsigalem3 32139 signswch 32440 bj-unrab 35041 bj-tagss 35097 bj-imdirco 35288 poimirlem16 35720 poimirlem19 35723 poimirlem23 35727 poimirlem29 35733 poimirlem31 35735 poimirlem32 35736 mblfinlem3 35743 mblfinlem4 35744 hdmapevec 39776 rtrclex 41114 trclexi 41117 rtrclexi 41118 cnvrcl0 41122 cnvtrcl0 41123 comptiunov2i 41203 cotrclrcl 41239 cncfiooicclem1 43324 fourierdlem62 43599 |
Copyright terms: Public domain | W3C validator |