MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssi Structured version   Visualization version   GIF version

Theorem unssi 4166
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
unssi.1 𝐴𝐶
unssi.2 𝐵𝐶
Assertion
Ref Expression
unssi (𝐴𝐵) ⊆ 𝐶

Proof of Theorem unssi
StepHypRef Expression
1 unssi.1 . . 3 𝐴𝐶
2 unssi.2 . . 3 𝐵𝐶
31, 2pm3.2i 470 . 2 (𝐴𝐶𝐵𝐶)
4 unss 4165 . 2 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
53, 4mpbi 230 1 (𝐴𝐵) ⊆ 𝐶
Colors of variables: wff setvar class
Syntax hints:  wa 395  cun 3924  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931  df-ss 3943
This theorem is referenced by:  pwunss  4593  dmrnssfld  5953  tc2  9756  djuunxp  9935  pwxpndom2  10679  ltrelxr  11296  nn0ssre  12505  nn0sscn  12506  nn0ssz  12611  dfle2  13163  difreicc  13501  hashxrcl  14375  ramxrcl  17037  strleun  17176  cssincl  21648  leordtval2  23150  lecldbas  23157  comppfsc  23470  aalioulem2  26293  taylfval  26318  addsbdaylem  27975  addsbday  27976  addsdilem3  28108  addsdilem4  28109  mulsasslem3  28120  onscutlt  28217  axlowdimlem10  28930  shunssji  31350  shsval3i  31369  shjshsi  31473  spanuni  31525  sshhococi  31527  esumcst  34094  hashf2  34115  sxbrsigalem3  34304  signswch  34593  bj-unrab  36944  bj-tagss  36998  bj-imdirco  37208  poimirlem16  37660  poimirlem19  37663  poimirlem23  37667  poimirlem29  37673  poimirlem31  37675  poimirlem32  37676  mblfinlem3  37683  mblfinlem4  37684  hdmapevec  41854  rtrclex  43641  trclexi  43644  rtrclexi  43645  cnvrcl0  43649  cnvtrcl0  43650  comptiunov2i  43730  cotrclrcl  43766  cncfiooicclem1  45922  fourierdlem62  46197
  Copyright terms: Public domain W3C validator