| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version | ||
| Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
| unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
| 4 | unss 4137 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∪ cun 3895 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 |
| This theorem is referenced by: pwunss 4565 dmrnssfld 5912 tc2 9630 djuunxp 9814 pwxpndom2 10556 ltrelxr 11173 nn0ssre 12385 nn0sscn 12386 nn0ssz 12491 dfle2 13046 difreicc 13384 hashxrcl 14264 ramxrcl 16929 strleun 17068 cssincl 21625 leordtval2 23127 lecldbas 23134 comppfsc 23447 aalioulem2 26268 taylfval 26293 addsbdaylem 27959 addsbday 27960 addsdilem3 28092 addsdilem4 28093 mulsasslem3 28104 onscutlt 28201 axlowdimlem10 28929 shunssji 31349 shsval3i 31368 shjshsi 31472 spanuni 31524 sshhococi 31526 esumcst 34076 hashf2 34097 sxbrsigalem3 34285 signswch 34574 tz9.1regs 35130 bj-unrab 36970 bj-tagss 37024 bj-imdirco 37234 poimirlem16 37686 poimirlem19 37689 poimirlem23 37693 poimirlem29 37699 poimirlem31 37701 poimirlem32 37702 mblfinlem3 37709 mblfinlem4 37710 hdmapevec 41944 rtrclex 43720 trclexi 43723 rtrclexi 43724 cnvrcl0 43728 cnvtrcl0 43729 comptiunov2i 43809 cotrclrcl 43845 cncfiooicclem1 46001 fourierdlem62 46276 |
| Copyright terms: Public domain | W3C validator |