| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version | ||
| Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
| unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
| 4 | unss 4153 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: pwunss 4581 dmrnssfld 5937 tc2 9695 djuunxp 9874 pwxpndom2 10618 ltrelxr 11235 nn0ssre 12446 nn0sscn 12447 nn0ssz 12552 dfle2 13107 difreicc 13445 hashxrcl 14322 ramxrcl 16988 strleun 17127 cssincl 21597 leordtval2 23099 lecldbas 23106 comppfsc 23419 aalioulem2 26241 taylfval 26266 addsbdaylem 27923 addsbday 27924 addsdilem3 28056 addsdilem4 28057 mulsasslem3 28068 onscutlt 28165 axlowdimlem10 28878 shunssji 31298 shsval3i 31317 shjshsi 31421 spanuni 31473 sshhococi 31475 esumcst 34053 hashf2 34074 sxbrsigalem3 34263 signswch 34552 bj-unrab 36914 bj-tagss 36968 bj-imdirco 37178 poimirlem16 37630 poimirlem19 37633 poimirlem23 37637 poimirlem29 37643 poimirlem31 37645 poimirlem32 37646 mblfinlem3 37653 mblfinlem4 37654 hdmapevec 41829 rtrclex 43606 trclexi 43609 rtrclexi 43610 cnvrcl0 43614 cnvtrcl0 43615 comptiunov2i 43695 cotrclrcl 43731 cncfiooicclem1 45891 fourierdlem62 46166 |
| Copyright terms: Public domain | W3C validator |