Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Visualization version   GIF version

Theorem esumcvg 34066
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 15759. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
esumcvg.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
esumcvg.a ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
esumcvg.m (𝑘 = 𝑚𝐴 = 𝐵)
Assertion
Ref Expression
esumcvg (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑘,𝑛,𝐵   𝑘,𝑚,𝐹,𝑛   𝑘,𝐽,𝑛   𝜑,𝑘,𝑚,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑚)   𝐽(𝑚)

Proof of Theorem esumcvg
Dummy variables 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12918 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12645 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 1 ∈ ℤ)
3 simpr 484 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
4 rge0ssre 13492 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
5 ax-resscn 11209 . . . . . . . . 9 ℝ ⊆ ℂ
64, 5sstri 4004 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
7 esumcvg.m . . . . . . . . . . . . 13 (𝑘 = 𝑚𝐴 = 𝐵)
87eleq1d 2823 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴 ∈ (0[,)+∞) ↔ 𝐵 ∈ (0[,)+∞)))
98cbvralvw 3234 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
10 rsp 3244 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
119, 10sylbir 235 . . . . . . . . . 10 (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1211adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1312imp 406 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
146, 13sselid 3992 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
1514adantlr 715 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
16 esumcvg.f . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
17 fzfid 14010 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
18 elfznn 13589 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
1918, 13sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2019adantlr 715 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2117, 20esumpfinval 34055 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
2221mpteq2dva 5247 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
2316, 22eqtrid 2786 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
246, 20sselid 3992 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
2517, 24fsumcl 15765 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ ℂ)
2623, 25fvmpt2d 7028 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
2726adantlr 715 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
281, 2, 3, 15, 27isumclim3 15791 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴)
29 esumcvg.j . . . . . 6 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
3017, 20fsumrp0cl 33008 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3121, 30eqeltrd 2838 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3231, 16fmptd 7133 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹:ℕ⟶(0[,)+∞))
3332adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
34 simplll 775 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝜑)
35 eqidd 2735 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑚 ∈ ℕ ↦ 𝐵) = (𝑚 ∈ ℕ ↦ 𝐵))
36 eqcom 2741 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑚 = 𝑘)
37 eqcom 2741 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
387, 36, 373imtr3i 291 . . . . . . . . . . 11 (𝑚 = 𝑘𝐵 = 𝐴)
3938adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 = 𝑘) → 𝐵 = 𝐴)
40 simpr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 esumcvg.a . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
4235, 39, 40, 41fvmptd 7022 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4334, 42sylancom 588 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4413adantlr 715 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
45 elrege0 13490 . . . . . . . . . 10 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4644, 45sylib 218 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4746simpld 494 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
48 ovex 7463 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ V
49 simpll 767 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
5018adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
5149, 50, 41syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
5251ralrimiva 3143 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
53 nfcv 2902 . . . . . . . . . . . . . . . 16 𝑘(1...𝑛)
5453esumcl 34010 . . . . . . . . . . . . . . 15 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5548, 52, 54sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5655, 16fmptd 7133 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(0[,]+∞))
5756ffnd 6737 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
5857adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 Fn ℕ)
59 1z 12644 . . . . . . . . . . . . . 14 1 ∈ ℤ
60 seqfn 14050 . . . . . . . . . . . . . 14 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6159, 60ax-mp 5 . . . . . . . . . . . . 13 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
621fneq2i 6666 . . . . . . . . . . . . 13 (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6361, 62mpbir 231 . . . . . . . . . . . 12 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ)
65 simplll 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
6618, 42sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
6765, 66sylancom 588 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
68 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6968, 1eleqtrdi 2848 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
7067, 69, 24fsumser 15762 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7126, 70eqtrd 2774 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7258, 64, 71eqfnfvd 7053 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7372adantr 480 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7473, 3eqeltrrd 2839 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
751, 2, 43, 47, 74isumrecl 15797 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
7646simprd 495 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
771, 2, 43, 47, 74, 76isumge0 15798 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 0 ≤ Σ𝑘 ∈ ℕ 𝐴)
78 elrege0 13490 . . . . . . 7 𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ 𝐴))
7975, 77, 78sylanbrc 583 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞))
80 ssid 4017 . . . . . 6 (0[,)+∞) ⊆ (0[,)+∞)
8129, 33, 79, 80lmlimxrge0 33908 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴))
8228, 81mpbird 257 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴)
8316, 3eqeltrrid 2843 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8422eleq1d 2823 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8584adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8683, 85mpbid 232 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8744, 7, 86esumpcvgval 34058 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
8882, 87breqtrrd 5175 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
8932adantr 480 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
90 simpr 484 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9190nnzd 12637 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
92 uzid 12890 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
93 peano2uz 12940 . . . . . . . 8 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
9491, 92, 933syl 18 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ (ℤ𝑛))
95 simplll 775 . . . . . . . 8 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
9695, 13sylancom 588 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
9790, 94, 96esumpmono 34059 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
9826, 21eqtr4d 2777 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
9998adantlr 715 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
100 oveq2 7438 . . . . . . . . . . 11 (𝑙 = 𝑛 → (1...𝑙) = (1...𝑛))
101 esumeq1 34014 . . . . . . . . . . 11 ((1...𝑙) = (1...𝑛) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
102100, 101syl 17 . . . . . . . . . 10 (𝑙 = 𝑛 → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
103102cbvmptv 5260 . . . . . . . . 9 (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
10416, 103eqtr4i 2765 . . . . . . . 8 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴)
105104a1i 11 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴))
106 simpr3 1195 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → 𝑙 = (𝑛 + 1))
107 oveq2 7438 . . . . . . . . 9 (𝑙 = (𝑛 + 1) → (1...𝑙) = (1...(𝑛 + 1)))
108 esumeq1 34014 . . . . . . . . 9 ((1...𝑙) = (1...(𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
109106, 107, 1083syl 18 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
1101093anassrs 1359 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = (𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
11190peano2nnd 12280 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
112 ovex 7463 . . . . . . . 8 (1...(𝑛 + 1)) ∈ V
113 simp-4l 783 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝜑)
114 elfznn 13589 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 + 1)) → 𝑘 ∈ ℕ)
115114adantl 481 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝑘 ∈ ℕ)
116113, 115, 41syl2anc 584 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (0[,]+∞))
117116ralrimiva 3143 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
118 nfcv 2902 . . . . . . . . 9 𝑘(1...(𝑛 + 1))
119118esumcl 34010 . . . . . . . 8 (((1...(𝑛 + 1)) ∈ V ∧ ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
120112, 117, 119sylancr 587 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
121105, 110, 111, 120fvmptd 7022 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
12297, 99, 1213brtr4d 5179 . . . . 5 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
123 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
12429, 89, 122, 123lmdvglim 33914 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽)+∞)
125 nfv 1911 . . . . . . 7 𝑘(𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
126 nfcv 2902 . . . . . . 7 𝑘
127 nnex 12269 . . . . . . . 8 ℕ ∈ V
128127a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ℕ ∈ V)
12941adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
130 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
131 simpll 767 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
132 inss1 4244 . . . . . . . . . . . . . 14 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
133 simplr 769 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
134132, 133sselid 3992 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 ℕ)
135134elpwid 4613 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ⊆ ℕ)
136 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
137135, 136sseldd 3995 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘 ∈ ℕ)
138131, 137, 13syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
139138fmpttd 7134 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑥𝐴):𝑥⟶(0[,)+∞))
140 esumpfinvallem 34054 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ∧ (𝑘𝑥𝐴):𝑥⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
141130, 139, 140syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
142 inss2 4245 . . . . . . . . . 10 (𝒫 ℕ ∩ Fin) ⊆ Fin
143142, 130sselid 3992 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
144131, 137, 14syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℂ)
145143, 144gsumfsum 21469 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
146141, 145eqtr3d 2776 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
147125, 126, 128, 129, 146esumval 34026 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
148147adantr 480 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
14989, 122, 123lmdvg 33913 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
150149r19.21bi 3248 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
151 nnz 12631 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → 𝑙 ∈ ℤ)
152 uzid 12890 . . . . . . . . . . . . 13 (𝑙 ∈ ℤ → 𝑙 ∈ (ℤ𝑙))
153151, 152syl 17 . . . . . . . . . . . 12 (𝑙 ∈ ℕ → 𝑙 ∈ (ℤ𝑙))
154 simpr 484 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙)
155154fveq2d 6910 . . . . . . . . . . . . 13 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝐹𝑛) = (𝐹𝑙))
156155breq2d 5159 . . . . . . . . . . . 12 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝑦 < (𝐹𝑛) ↔ 𝑦 < (𝐹𝑙)))
157153, 156rspcdv 3613 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → 𝑦 < (𝐹𝑙)))
158157reximia 3078 . . . . . . . . . 10 (∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
159150, 158syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
160 simplr 769 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑦 ∈ ℝ)
16189ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
162 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
163161, 162ffvelcdmd 7104 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ (0[,)+∞))
1644, 163sselid 3992 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ ℝ)
165 ltle 11346 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑙) ∈ ℝ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
166160, 164, 165syl2anc 584 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
167 oveq2 7438 . . . . . . . . . . . . . . 15 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
168 esumeq1 34014 . . . . . . . . . . . . . . 15 ((1...𝑛) = (1...𝑙) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
169167, 168syl 17 . . . . . . . . . . . . . 14 (𝑛 = 𝑙 → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
170 esumex 34009 . . . . . . . . . . . . . . 15 Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V
171170a1i 11 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V)
17216, 169, 162, 171fvmptd3 7038 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ*𝑘 ∈ (1...𝑙)𝐴)
173 fzfid 14010 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
174 simp-4l 783 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
175 elfznn 13589 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
176175adantl 481 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℕ)
177174, 176, 13syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝐴 ∈ (0[,)+∞))
178173, 177esumpfinval 34055 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
179172, 178eqtrd 2774 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ𝑘 ∈ (1...𝑙)𝐴)
180179breq2d 5159 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
181166, 180sylibd 239 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
182181reximdva 3165 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → (∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
183159, 182mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴)
184 fzssuz 13601 . . . . . . . . . . . . . 14 (1...𝑙) ⊆ (ℤ‘1)
185184, 1sseqtrri 4032 . . . . . . . . . . . . 13 (1...𝑙) ⊆ ℕ
186 ovex 7463 . . . . . . . . . . . . . 14 (1...𝑙) ∈ V
187186elpw 4608 . . . . . . . . . . . . 13 ((1...𝑙) ∈ 𝒫 ℕ ↔ (1...𝑙) ⊆ ℕ)
188185, 187mpbir 231 . . . . . . . . . . . 12 (1...𝑙) ∈ 𝒫 ℕ
189 fzfi 14009 . . . . . . . . . . . 12 (1...𝑙) ∈ Fin
190 elin 3978 . . . . . . . . . . . 12 ((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑙) ∈ 𝒫 ℕ ∧ (1...𝑙) ∈ Fin))
191188, 189, 190mpbir2an 711 . . . . . . . . . . 11 (1...𝑙) ∈ (𝒫 ℕ ∩ Fin)
192 sumex 15720 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V
193 eqid 2734 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) = (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
194 sumeq1 15721 . . . . . . . . . . . 12 (𝑥 = (1...𝑙) → Σ𝑘𝑥 𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
195193, 194elrnmpt1s 5972 . . . . . . . . . . 11 (((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ∧ Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V) → Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴))
196191, 192, 195mp2an 692 . . . . . . . . . 10 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
197 nfv 1911 . . . . . . . . . . 11 𝑧 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴
198 breq2 5151 . . . . . . . . . . 11 (𝑧 = Σ𝑘 ∈ (1...𝑙)𝐴 → (𝑦𝑧𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
199197, 198rspce 3610 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ∧ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
200196, 199mpan 690 . . . . . . . . 9 (𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
201200rexlimivw 3148 . . . . . . . 8 (∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
202183, 201syl 17 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
203202ralrimiva 3143 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
204 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
205142, 204sselid 3992 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
206138adantllr 719 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
2074, 206sselid 3992 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℝ)
208205, 207fsumrecl 15766 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ)
209208rexrd 11308 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ*)
210209fmpttd 7134 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ*)
211 frn 6743 . . . . . . 7 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ* → ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ*)
212 supxrunb1 13357 . . . . . . 7 (ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
213210, 211, 2123syl 18 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
214203, 213mpbid 232 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞)
215148, 214eqtrd 2774 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
216124, 215breqtrrd 5175 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21788, 216pm2.61dan 813 . 2 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21816reseq1i 5995 . . . . . . . 8 (𝐹 ↾ (ℤ𝑘)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘))
219 eleq1w 2821 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 ∈ ℕ ↔ 𝑘 ∈ ℕ))
220219anbi2d 630 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝜑𝑙 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
221 sbequ12r 2249 . . . . . . . . . . 11 (𝑙 = 𝑘 → ([𝑙 / 𝑘]𝐴 = +∞ ↔ 𝐴 = +∞))
222220, 221anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ↔ ((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞)))
223 fveq2 6906 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
224223reseq2d 5999 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)))
225223xpeq1d 5717 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((ℤ𝑙) × {+∞}) = ((ℤ𝑘) × {+∞}))
226224, 225eqeq12d 2750 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}) ↔ ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
227222, 226imbi12d 344 . . . . . . . . 9 (𝑙 = 𝑘 → ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞})) ↔ (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))))
228 nfv 1911 . . . . . . . . . . . . . 14 𝑘(𝜑𝑙 ∈ ℕ)
229 nfs1v 2153 . . . . . . . . . . . . . 14 𝑘[𝑙 / 𝑘]𝐴 = +∞
230228, 229nfan 1896 . . . . . . . . . . . . 13 𝑘((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞)
231 nfv 1911 . . . . . . . . . . . . 13 𝑘 𝑛 ∈ (ℤ𝑙)
232230, 231nfan 1896 . . . . . . . . . . . 12 𝑘(((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙))
233 ovexd 7465 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → (1...𝑛) ∈ V)
234 simp-4l 783 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
23518adantl 481 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
236234, 235, 41syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
237 simpllr 776 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ ℕ)
238 elnnuz 12919 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ ↔ 𝑙 ∈ (ℤ‘1))
239 eluzfz 13555 . . . . . . . . . . . . . . 15 ((𝑙 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
240238, 239sylanb 581 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
241237, 240sylancom 588 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
242 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → [𝑙 / 𝑘]𝐴 = +∞)
243 sbequ12 2248 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐴 = +∞ ↔ [𝑙 / 𝑘]𝐴 = +∞))
244229, 243rspce 3610 . . . . . . . . . . . . 13 ((𝑙 ∈ (1...𝑛) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
245241, 242, 244syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
246232, 233, 236, 245esumpinfval 34053 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → Σ*𝑘 ∈ (1...𝑛)𝐴 = +∞)
247246ralrimiva 3143 . . . . . . . . . 10 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞)
248 eqidd 2735 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → (ℤ𝑙) = (ℤ𝑙))
249 mpteq12 5239 . . . . . . . . . . . 12 (((ℤ𝑙) = (ℤ𝑙) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
250248, 249sylan 580 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
251 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → 𝑙 ∈ ℕ)
252 uznnssnn 12934 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
253 resmpt 6056 . . . . . . . . . . . . 13 ((ℤ𝑙) ⊆ ℕ → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
254251, 252, 2533syl 18 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
255254adantr 480 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
256 fconstmpt 5750 . . . . . . . . . . . 12 ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞)
257256a1i 11 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
258250, 255, 2573eqtr4d 2784 . . . . . . . . . 10 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
259247, 258mpdan 687 . . . . . . . . 9 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
260227, 259chvarvv 1995 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
261218, 260eqtrid 2786 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
262261ex 412 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 = +∞ → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
263262reximdva 3165 . . . . 5 (𝜑 → (∃𝑘 ∈ ℕ 𝐴 = +∞ → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
264263imp 406 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
265 xrge0topn 33903 . . . . . . . . . . 11 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
26629, 265eqtri 2762 . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
267 letopon 23228 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
268 iccssxr 13466 . . . . . . . . . . 11 (0[,]+∞) ⊆ ℝ*
269 resttopon 23184 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
270267, 268, 269mp2an 692 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
271266, 270eqeltri 2834 . . . . . . . . 9 𝐽 ∈ (TopOn‘(0[,]+∞))
272271a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐽 ∈ (TopOn‘(0[,]+∞)))
273 0xr 11305 . . . . . . . . . 10 0 ∈ ℝ*
274 pnfxr 11312 . . . . . . . . . 10 +∞ ∈ ℝ*
275 0lepnf 13171 . . . . . . . . . 10 0 ≤ +∞
276 ubicc2 13501 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
277273, 274, 275, 276mp3an 1460 . . . . . . . . 9 +∞ ∈ (0[,]+∞)
278277a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → +∞ ∈ (0[,]+∞))
27940nnzd 12637 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
280 eqid 2734 . . . . . . . . 9 (ℤ𝑘) = (ℤ𝑘)
281280lmconst 23284 . . . . . . . 8 ((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ +∞ ∈ (0[,]+∞) ∧ 𝑘 ∈ ℤ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
282272, 278, 279, 281syl3anc 1370 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
283 breq1 5150 . . . . . . . 8 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → ((𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞ ↔ ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞))
284283biimprd 248 . . . . . . 7 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → (((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞ → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
285282, 284mpan9 506 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞)
286 ovexd 7465 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (0[,]+∞) ∈ V)
287 cnex 11233 . . . . . . . . . 10 ℂ ∈ V
288287a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℂ ∈ V)
28956adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
290 nnsscn 12268 . . . . . . . . . 10 ℕ ⊆ ℂ
291290a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℕ ⊆ ℂ)
292 elpm2r 8883 . . . . . . . . 9 ((((0[,]+∞) ∈ V ∧ ℂ ∈ V) ∧ (𝐹:ℕ⟶(0[,]+∞) ∧ ℕ ⊆ ℂ)) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
293286, 288, 289, 291, 292syl22anc 839 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
294272, 293, 279lmres 23323 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹(⇝𝑡𝐽)+∞ ↔ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
295294biimpar 477 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞) → 𝐹(⇝𝑡𝐽)+∞)
296285, 295syldan 591 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
297296r19.29an 3155 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
298264, 297syldan 591 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽)+∞)
299 nfv 1911 . . . . 5 𝑘𝜑
300 nfre1 3282 . . . . 5 𝑘𝑘 ∈ ℕ 𝐴 = +∞
301299, 300nfan 1896 . . . 4 𝑘(𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞)
302127a1i 11 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ℕ ∈ V)
30341adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
304 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ 𝐴 = +∞)
305301, 302, 303, 304esumpinfval 34053 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
306298, 305breqtrrd 5175 . 2 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
307 eleq1w 2821 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 ∈ ℕ ↔ 𝑚 ∈ ℕ))
308307anbi2d 630 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑚 ∈ ℕ)))
3097eleq1d 2823 . . . . . . . 8 (𝑘 = 𝑚 → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
310308, 309imbi12d 344 . . . . . . 7 (𝑘 = 𝑚 → (((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))))
311310, 41chvarvv 1995 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))
312 eliccelico 32785 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞)))
313273, 274, 275, 312mp3an 1460 . . . . . 6 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
314311, 313sylib 218 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
315314ralrimiva 3143 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
316 r19.30 3117 . . . 4 (∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞) → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
317315, 316syl 17 . . 3 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
3187eqeq1d 2736 . . . . 5 (𝑘 = 𝑚 → (𝐴 = +∞ ↔ 𝐵 = +∞))
319318cbvrexvw 3235 . . . 4 (∃𝑘 ∈ ℕ 𝐴 = +∞ ↔ ∃𝑚 ∈ ℕ 𝐵 = +∞)
320319orbi2i 912 . . 3 ((∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞) ↔ (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
321317, 320sylibr 234 . 2 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞))
322217, 306, 321mpjaodan 960 1 (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  [wsb 2061  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  cin 3961  wss 3962  𝒫 cpw 4604  {csn 4630   class class class wbr 5147  cmpt 5230   × cxp 5686  dom cdm 5688  ran crn 5689  cres 5690   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  pm cpm 8865  Fincfn 8983  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cn 12263  cz 12610  cuz 12875  [,)cico 13385  [,]cicc 13386  ...cfz 13543  seqcseq 14038  cli 15516  Σcsu 15718  s cress 17273  t crest 17466  TopOpenctopn 17467   Σg cgsu 17486  ordTopcordt 17545  *𝑠cxrs 17546  fldccnfld 21381  TopOnctopon 22931  𝑡clm 23249  Σ*cesum 34007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-ordt 17547  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-ps 18623  df-tsr 18624  df-plusf 18664  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-abv 20826  df-lmod 20876  df-scaf 20877  df-sra 21189  df-rgmod 21190  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-tmd 24095  df-tgp 24096  df-tsms 24150  df-trg 24183  df-xms 24345  df-ms 24346  df-tms 24347  df-nm 24610  df-ngp 24611  df-nrg 24613  df-nlm 24614  df-ii 24916  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-esum 34008
This theorem is referenced by:  esumcvg2  34067
  Copyright terms: Public domain W3C validator