Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Visualization version   GIF version

Theorem esumcvg 30495
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 14700. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
esumcvg.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
esumcvg.a ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
esumcvg.m (𝑘 = 𝑚𝐴 = 𝐵)
Assertion
Ref Expression
esumcvg (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑘,𝑛,𝐵   𝑘,𝑚,𝐹,𝑛   𝑘,𝐽,𝑛   𝜑,𝑘,𝑚,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑚)   𝐽(𝑚)

Proof of Theorem esumcvg
Dummy variables 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11960 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 11693 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 1 ∈ ℤ)
3 simpr 473 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
4 rge0ssre 12519 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
5 ax-resscn 10287 . . . . . . . . 9 ℝ ⊆ ℂ
64, 5sstri 3818 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
7 esumcvg.m . . . . . . . . . . . . 13 (𝑘 = 𝑚𝐴 = 𝐵)
87eleq1d 2881 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴 ∈ (0[,)+∞) ↔ 𝐵 ∈ (0[,)+∞)))
98cbvralv 3371 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
10 rsp 3128 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
119, 10sylbir 226 . . . . . . . . . 10 (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1211adantl 469 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1312imp 395 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
146, 13sseldi 3807 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
1514adantlr 697 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
16 esumcvg.f . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
17 fzfid 13015 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
18 elfznn 12612 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
1918, 13sylan2 582 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2019adantlr 697 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2117, 20esumpfinval 30484 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
2221mpteq2dva 4949 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
2316, 22syl5eq 2863 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
246, 20sseldi 3807 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
2517, 24fsumcl 14706 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ ℂ)
2623, 25fvmpt2d 6523 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
2726adantlr 697 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
281, 2, 3, 15, 27isumclim3 14732 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴)
29 esumcvg.j . . . . . 6 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
3017, 20fsumrp0cl 30042 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3121, 30eqeltrd 2896 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3231, 16fmptd 6615 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹:ℕ⟶(0[,)+∞))
3332adantr 468 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
34 simplll 782 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝜑)
35 eqidd 2818 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑚 ∈ ℕ ↦ 𝐵) = (𝑚 ∈ ℕ ↦ 𝐵))
36 eqcom 2824 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑚 = 𝑘)
37 eqcom 2824 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
387, 36, 373imtr3i 282 . . . . . . . . . . 11 (𝑚 = 𝑘𝐵 = 𝐴)
3938adantl 469 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 = 𝑘) → 𝐵 = 𝐴)
40 simpr 473 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 esumcvg.a . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
4235, 39, 40, 41fvmptd 6518 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4334, 42sylancom 578 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4413adantlr 697 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
45 elrege0 12517 . . . . . . . . . 10 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4644, 45sylib 209 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4746simpld 484 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
48 ovex 6915 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ V
49 simpll 774 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
5018adantl 469 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
5149, 50, 41syl2anc 575 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
5251ralrimiva 3165 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
53 nfcv 2959 . . . . . . . . . . . . . . . 16 𝑘(1...𝑛)
5453esumcl 30439 . . . . . . . . . . . . . . 15 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5548, 52, 54sylancr 577 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5655, 16fmptd 6615 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(0[,]+∞))
5756ffnd 6266 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
5857adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 Fn ℕ)
59 1z 11692 . . . . . . . . . . . . . 14 1 ∈ ℤ
60 seqfn 13055 . . . . . . . . . . . . . 14 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6159, 60ax-mp 5 . . . . . . . . . . . . 13 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
621fneq2i 6206 . . . . . . . . . . . . 13 (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6361, 62mpbir 222 . . . . . . . . . . . 12 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ)
65 simplll 782 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
6618, 42sylan2 582 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
6765, 66sylancom 578 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
68 simpr 473 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6968, 1syl6eleq 2906 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
7067, 69, 24fsumser 14703 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7126, 70eqtrd 2851 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7258, 64, 71eqfnfvd 6545 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7372adantr 468 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7473, 3eqeltrrd 2897 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
751, 2, 43, 47, 74isumrecl 14738 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
7646simprd 485 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
771, 2, 43, 47, 74, 76isumge0 14739 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 0 ≤ Σ𝑘 ∈ ℕ 𝐴)
78 elrege0 12517 . . . . . . 7 𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ 𝐴))
7975, 77, 78sylanbrc 574 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞))
80 ssid 3831 . . . . . 6 (0[,)+∞) ⊆ (0[,)+∞)
8129, 33, 79, 80lmlimxrge0 30341 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴))
8228, 81mpbird 248 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴)
8316, 3syl5eqelr 2901 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8422eleq1d 2881 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8584adantr 468 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8683, 85mpbid 223 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8744, 7, 86esumpcvgval 30487 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
8882, 87breqtrrd 4883 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
8932adantr 468 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
90 simpr 473 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9190nnzd 11766 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
92 uzid 11938 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
93 peano2uz 11978 . . . . . . . 8 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
9491, 92, 933syl 18 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ (ℤ𝑛))
95 simplll 782 . . . . . . . 8 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
9695, 13sylancom 578 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
9790, 94, 96esumpmono 30488 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
9826, 21eqtr4d 2854 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
9998adantlr 697 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
100 oveq2 6891 . . . . . . . . . . 11 (𝑙 = 𝑛 → (1...𝑙) = (1...𝑛))
101 esumeq1 30443 . . . . . . . . . . 11 ((1...𝑙) = (1...𝑛) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
102100, 101syl 17 . . . . . . . . . 10 (𝑙 = 𝑛 → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
103102cbvmptv 4955 . . . . . . . . 9 (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
10416, 103eqtr4i 2842 . . . . . . . 8 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴)
105104a1i 11 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴))
106 simpr3 1245 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → 𝑙 = (𝑛 + 1))
107 oveq2 6891 . . . . . . . . 9 (𝑙 = (𝑛 + 1) → (1...𝑙) = (1...(𝑛 + 1)))
108 esumeq1 30443 . . . . . . . . 9 ((1...𝑙) = (1...(𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
109106, 107, 1083syl 18 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
1101093anassrs 1462 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = (𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
11190peano2nnd 11333 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
112 ovex 6915 . . . . . . . 8 (1...(𝑛 + 1)) ∈ V
113 simp-4l 792 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝜑)
114 elfznn 12612 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 + 1)) → 𝑘 ∈ ℕ)
115114adantl 469 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝑘 ∈ ℕ)
116113, 115, 41syl2anc 575 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (0[,]+∞))
117116ralrimiva 3165 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
118 nfcv 2959 . . . . . . . . 9 𝑘(1...(𝑛 + 1))
119118esumcl 30439 . . . . . . . 8 (((1...(𝑛 + 1)) ∈ V ∧ ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
120112, 117, 119sylancr 577 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
121105, 110, 111, 120fvmptd 6518 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
12297, 99, 1213brtr4d 4887 . . . . 5 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
123 simpr 473 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
12429, 89, 122, 123lmdvglim 30347 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽)+∞)
125 nfv 2005 . . . . . . 7 𝑘(𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
126 nfcv 2959 . . . . . . 7 𝑘
127 nnex 11321 . . . . . . . 8 ℕ ∈ V
128127a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ℕ ∈ V)
12941adantlr 697 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
130 simpr 473 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
131 simpll 774 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
132 inss1 4040 . . . . . . . . . . . . . 14 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
133 simplr 776 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
134132, 133sseldi 3807 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 ℕ)
135134elpwid 4374 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ⊆ ℕ)
136 simpr 473 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
137135, 136sseldd 3810 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘 ∈ ℕ)
138131, 137, 13syl2anc 575 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
139138fmpttd 6616 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑥𝐴):𝑥⟶(0[,)+∞))
140 esumpfinvallem 30483 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ∧ (𝑘𝑥𝐴):𝑥⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
141130, 139, 140syl2anc 575 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
142 inss2 4041 . . . . . . . . . 10 (𝒫 ℕ ∩ Fin) ⊆ Fin
143142, 130sseldi 3807 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
144131, 137, 14syl2anc 575 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℂ)
145143, 144gsumfsum 20040 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
146141, 145eqtr3d 2853 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
147125, 126, 128, 129, 146esumval 30455 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
148147adantr 468 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
14989, 122, 123lmdvg 30346 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
150149r19.21bi 3131 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
151 nnz 11684 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → 𝑙 ∈ ℤ)
152 uzid 11938 . . . . . . . . . . . . 13 (𝑙 ∈ ℤ → 𝑙 ∈ (ℤ𝑙))
153151, 152syl 17 . . . . . . . . . . . 12 (𝑙 ∈ ℕ → 𝑙 ∈ (ℤ𝑙))
154 simpr 473 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙)
155154fveq2d 6421 . . . . . . . . . . . . 13 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝐹𝑛) = (𝐹𝑙))
156155breq2d 4867 . . . . . . . . . . . 12 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝑦 < (𝐹𝑛) ↔ 𝑦 < (𝐹𝑙)))
157153, 156rspcdv 3516 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → 𝑦 < (𝐹𝑙)))
158157reximia 3207 . . . . . . . . . 10 (∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
159150, 158syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
160 simplr 776 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑦 ∈ ℝ)
16189ad2antrr 708 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
162 simpr 473 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
163161, 162ffvelrnd 6591 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ (0[,)+∞))
1644, 163sseldi 3807 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ ℝ)
165 ltle 10420 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑙) ∈ ℝ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
166160, 164, 165syl2anc 575 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
16716a1i 11 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
168 oveq2 6891 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
169 esumeq1 30443 . . . . . . . . . . . . . . . 16 ((1...𝑛) = (1...𝑙) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
170168, 169syl 17 . . . . . . . . . . . . . . 15 (𝑛 = 𝑙 → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
171170adantl 469 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑛 = 𝑙) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
172 esumex 30438 . . . . . . . . . . . . . . 15 Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V
173172a1i 11 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V)
174167, 171, 162, 173fvmptd 6518 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ*𝑘 ∈ (1...𝑙)𝐴)
175 fzfid 13015 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
176 simp-4l 792 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
177 elfznn 12612 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
178177adantl 469 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℕ)
179176, 178, 13syl2anc 575 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝐴 ∈ (0[,)+∞))
180175, 179esumpfinval 30484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
181174, 180eqtrd 2851 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ𝑘 ∈ (1...𝑙)𝐴)
182181breq2d 4867 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
183166, 182sylibd 230 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
184183reximdva 3215 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → (∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
185159, 184mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴)
186 fzssuz 12624 . . . . . . . . . . . . . 14 (1...𝑙) ⊆ (ℤ‘1)
187186, 1sseqtr4i 3846 . . . . . . . . . . . . 13 (1...𝑙) ⊆ ℕ
188 ovex 6915 . . . . . . . . . . . . . 14 (1...𝑙) ∈ V
189188elpw 4368 . . . . . . . . . . . . 13 ((1...𝑙) ∈ 𝒫 ℕ ↔ (1...𝑙) ⊆ ℕ)
190187, 189mpbir 222 . . . . . . . . . . . 12 (1...𝑙) ∈ 𝒫 ℕ
191 fzfi 13014 . . . . . . . . . . . 12 (1...𝑙) ∈ Fin
192 elin 4006 . . . . . . . . . . . 12 ((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑙) ∈ 𝒫 ℕ ∧ (1...𝑙) ∈ Fin))
193190, 191, 192mpbir2an 693 . . . . . . . . . . 11 (1...𝑙) ∈ (𝒫 ℕ ∩ Fin)
194 sumex 14660 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V
195 eqid 2817 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) = (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
196 sumeq1 14661 . . . . . . . . . . . 12 (𝑥 = (1...𝑙) → Σ𝑘𝑥 𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
197195, 196elrnmpt1s 5587 . . . . . . . . . . 11 (((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ∧ Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V) → Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴))
198193, 194, 197mp2an 675 . . . . . . . . . 10 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
199 nfv 2005 . . . . . . . . . . 11 𝑧 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴
200 breq2 4859 . . . . . . . . . . 11 (𝑧 = Σ𝑘 ∈ (1...𝑙)𝐴 → (𝑦𝑧𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
201199, 200rspce 3508 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ∧ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
202198, 201mpan 673 . . . . . . . . 9 (𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
203202rexlimivw 3228 . . . . . . . 8 (∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
204185, 203syl 17 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
205204ralrimiva 3165 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
206 simpr 473 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
207142, 206sseldi 3807 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
208138adantllr 701 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
2094, 208sseldi 3807 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℝ)
210207, 209fsumrecl 14707 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ)
211210rexrd 10383 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ*)
212211fmpttd 6616 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ*)
213 frn 6271 . . . . . . 7 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ* → ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ*)
214 supxrunb1 12386 . . . . . . 7 (ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
215212, 213, 2143syl 18 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
216205, 215mpbid 223 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞)
217148, 216eqtrd 2851 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
218124, 217breqtrrd 4883 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21988, 218pm2.61dan 838 . 2 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
22016reseq1i 5606 . . . . . . . 8 (𝐹 ↾ (ℤ𝑘)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘))
221 eleq1w 2879 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 ∈ ℕ ↔ 𝑘 ∈ ℕ))
222221anbi2d 616 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝜑𝑙 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
223 sbequ12r 2281 . . . . . . . . . . 11 (𝑙 = 𝑘 → ([𝑙 / 𝑘]𝐴 = +∞ ↔ 𝐴 = +∞))
224222, 223anbi12d 618 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ↔ ((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞)))
225 fveq2 6417 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
226225reseq2d 5610 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)))
227225xpeq1d 5352 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((ℤ𝑙) × {+∞}) = ((ℤ𝑘) × {+∞}))
228226, 227eqeq12d 2832 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}) ↔ ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
229224, 228imbi12d 335 . . . . . . . . 9 (𝑙 = 𝑘 → ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞})) ↔ (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))))
230 nfv 2005 . . . . . . . . . . . . . 14 𝑘(𝜑𝑙 ∈ ℕ)
231 nfs1v 2288 . . . . . . . . . . . . . 14 𝑘[𝑙 / 𝑘]𝐴 = +∞
232230, 231nfan 1990 . . . . . . . . . . . . 13 𝑘((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞)
233 nfv 2005 . . . . . . . . . . . . 13 𝑘 𝑛 ∈ (ℤ𝑙)
234232, 233nfan 1990 . . . . . . . . . . . 12 𝑘(((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙))
235 ovexd 6917 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → (1...𝑛) ∈ V)
236 simp-4l 792 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
23718adantl 469 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
238236, 237, 41syl2anc 575 . . . . . . . . . . . 12 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
239 simpllr 784 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ ℕ)
240 elnnuz 11961 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ ↔ 𝑙 ∈ (ℤ‘1))
241 eluzfz 12579 . . . . . . . . . . . . . . 15 ((𝑙 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
242240, 241sylanb 572 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
243239, 242sylancom 578 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
244 simplr 776 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → [𝑙 / 𝑘]𝐴 = +∞)
245 sbequ12 2280 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐴 = +∞ ↔ [𝑙 / 𝑘]𝐴 = +∞))
246231, 245rspce 3508 . . . . . . . . . . . . 13 ((𝑙 ∈ (1...𝑛) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
247243, 244, 246syl2anc 575 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
248234, 235, 238, 247esumpinfval 30482 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → Σ*𝑘 ∈ (1...𝑛)𝐴 = +∞)
249248ralrimiva 3165 . . . . . . . . . 10 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞)
250 eqidd 2818 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → (ℤ𝑙) = (ℤ𝑙))
251 mpteq12 4941 . . . . . . . . . . . 12 (((ℤ𝑙) = (ℤ𝑙) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
252250, 251sylan 571 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
253 simplr 776 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → 𝑙 ∈ ℕ)
254 uznnssnn 11972 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
255 resmpt 5667 . . . . . . . . . . . . 13 ((ℤ𝑙) ⊆ ℕ → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
256253, 254, 2553syl 18 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
257256adantr 468 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
258 fconstmpt 5376 . . . . . . . . . . . 12 ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞)
259258a1i 11 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
260252, 257, 2593eqtr4d 2861 . . . . . . . . . 10 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
261249, 260mpdan 670 . . . . . . . . 9 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
262229, 261chvarv 2439 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
263220, 262syl5eq 2863 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
264263ex 399 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 = +∞ → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
265264reximdva 3215 . . . . 5 (𝜑 → (∃𝑘 ∈ ℕ 𝐴 = +∞ → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
266265imp 395 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
267 xrge0topn 30336 . . . . . . . . . . 11 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
26829, 267eqtri 2839 . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
269 letopon 21243 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
270 iccssxr 12493 . . . . . . . . . . 11 (0[,]+∞) ⊆ ℝ*
271 resttopon 21199 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
272269, 270, 271mp2an 675 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
273268, 272eqeltri 2892 . . . . . . . . 9 𝐽 ∈ (TopOn‘(0[,]+∞))
274273a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐽 ∈ (TopOn‘(0[,]+∞)))
275 0xr 10380 . . . . . . . . . 10 0 ∈ ℝ*
276 pnfxr 10386 . . . . . . . . . 10 +∞ ∈ ℝ*
277 0lepnf 12201 . . . . . . . . . 10 0 ≤ +∞
278 ubicc2 12528 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
279275, 276, 277, 278mp3an 1578 . . . . . . . . 9 +∞ ∈ (0[,]+∞)
280279a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → +∞ ∈ (0[,]+∞))
28140nnzd 11766 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
282 eqid 2817 . . . . . . . . 9 (ℤ𝑘) = (ℤ𝑘)
283282lmconst 21299 . . . . . . . 8 ((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ +∞ ∈ (0[,]+∞) ∧ 𝑘 ∈ ℤ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
284274, 280, 281, 283syl3anc 1483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
285 breq1 4858 . . . . . . . 8 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → ((𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞ ↔ ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞))
286285biimprd 239 . . . . . . 7 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → (((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞ → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
287284, 286mpan9 498 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞)
288 ovexd 6917 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (0[,]+∞) ∈ V)
289 cnex 10311 . . . . . . . . . 10 ℂ ∈ V
290289a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℂ ∈ V)
29156adantr 468 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
292 nnsscn 11319 . . . . . . . . . 10 ℕ ⊆ ℂ
293292a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℕ ⊆ ℂ)
294 elpm2r 8119 . . . . . . . . 9 ((((0[,]+∞) ∈ V ∧ ℂ ∈ V) ∧ (𝐹:ℕ⟶(0[,]+∞) ∧ ℕ ⊆ ℂ)) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
295288, 290, 291, 293, 294syl22anc 858 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
296274, 295, 281lmres 21338 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹(⇝𝑡𝐽)+∞ ↔ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
297296biimpar 465 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞) → 𝐹(⇝𝑡𝐽)+∞)
298287, 297syldan 581 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
299298r19.29an 3276 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
300266, 299syldan 581 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽)+∞)
301 nfv 2005 . . . . 5 𝑘𝜑
302 nfre1 3203 . . . . 5 𝑘𝑘 ∈ ℕ 𝐴 = +∞
303301, 302nfan 1990 . . . 4 𝑘(𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞)
304127a1i 11 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ℕ ∈ V)
30541adantlr 697 . . . 4 (((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
306 simpr 473 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ 𝐴 = +∞)
307303, 304, 305, 306esumpinfval 30482 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
308300, 307breqtrrd 4883 . 2 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
309 eleq1w 2879 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 ∈ ℕ ↔ 𝑚 ∈ ℕ))
310309anbi2d 616 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑚 ∈ ℕ)))
3117eleq1d 2881 . . . . . . . 8 (𝑘 = 𝑚 → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
312310, 311imbi12d 335 . . . . . . 7 (𝑘 = 𝑚 → (((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))))
313312, 41chvarv 2439 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))
314 eliccelico 29888 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞)))
315275, 276, 277, 314mp3an 1578 . . . . . 6 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
316313, 315sylib 209 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
317316ralrimiva 3165 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
318 r19.30 3281 . . . 4 (∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞) → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
319317, 318syl 17 . . 3 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
3207eqeq1d 2819 . . . . 5 (𝑘 = 𝑚 → (𝐴 = +∞ ↔ 𝐵 = +∞))
321320cbvrexv 3372 . . . 4 (∃𝑘 ∈ ℕ 𝐴 = +∞ ↔ ∃𝑚 ∈ ℕ 𝐵 = +∞)
322321orbi2i 927 . . 3 ((∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞) ↔ (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
323319, 322sylibr 225 . 2 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞))
324219, 308, 323mpjaodan 972 1 (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  [wsb 2061  wcel 2157  wral 3107  wrex 3108  Vcvv 3402  cin 3779  wss 3780  𝒫 cpw 4362  {csn 4381   class class class wbr 4855  cmpt 4934   × cxp 5322  dom cdm 5324  ran crn 5325  cres 5326   Fn wfn 6105  wf 6106  cfv 6110  (class class class)co 6883  pm cpm 8102  Fincfn 8201  supcsup 8594  cc 10228  cr 10229  0cc0 10230  1c1 10231   + caddc 10233  +∞cpnf 10365  *cxr 10367   < clt 10368  cle 10369  cn 11314  cz 11662  cuz 11923  [,)cico 12414  [,]cicc 12415  ...cfz 12568  seqcseq 13043  cli 14457  Σcsu 14658  s cress 16088  t crest 16305  TopOpenctopn 16306   Σg cgsu 16325  ordTopcordt 16383  *𝑠cxrs 16384  fldccnfld 19973  TopOnctopon 20948  𝑡clm 21264  Σ*cesum 30436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-inf2 8794  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307  ax-pre-sup 10308  ax-addf 10309  ax-mulf 10310
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-isom 6119  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-of 7136  df-om 7305  df-1st 7407  df-2nd 7408  df-supp 7539  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-1o 7805  df-2o 7806  df-oadd 7809  df-er 7988  df-map 8103  df-pm 8104  df-ixp 8155  df-en 8202  df-dom 8203  df-sdom 8204  df-fin 8205  df-fsupp 8524  df-fi 8565  df-sup 8596  df-inf 8597  df-oi 8663  df-card 9057  df-cda 9284  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-div 10979  df-nn 11315  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11579  df-xnn0 11649  df-z 11663  df-dec 11779  df-uz 11924  df-q 12027  df-rp 12066  df-xneg 12181  df-xadd 12182  df-xmul 12183  df-ioo 12416  df-ioc 12417  df-ico 12418  df-icc 12419  df-fz 12569  df-fzo 12709  df-fl 12836  df-mod 12912  df-seq 13044  df-exp 13103  df-fac 13300  df-bc 13329  df-hash 13357  df-shft 14049  df-cj 14081  df-re 14082  df-im 14083  df-sqrt 14217  df-abs 14218  df-limsup 14444  df-clim 14461  df-rlim 14462  df-sum 14659  df-ef 15037  df-sin 15039  df-cos 15040  df-pi 15042  df-struct 16089  df-ndx 16090  df-slot 16091  df-base 16093  df-sets 16094  df-ress 16095  df-plusg 16185  df-mulr 16186  df-starv 16187  df-sca 16188  df-vsca 16189  df-ip 16190  df-tset 16191  df-ple 16192  df-ds 16194  df-unif 16195  df-hom 16196  df-cco 16197  df-rest 16307  df-topn 16308  df-0g 16326  df-gsum 16327  df-topgen 16328  df-pt 16329  df-prds 16332  df-ordt 16385  df-xrs 16386  df-qtop 16391  df-imas 16392  df-xps 16394  df-mre 16470  df-mrc 16471  df-acs 16473  df-ps 17424  df-tsr 17425  df-plusf 17465  df-mgm 17466  df-sgrp 17508  df-mnd 17519  df-mhm 17559  df-submnd 17560  df-grp 17649  df-minusg 17650  df-sbg 17651  df-mulg 17765  df-subg 17812  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-subrg 19001  df-abv 19040  df-lmod 19088  df-scaf 19089  df-sra 19400  df-rgmod 19401  df-psmet 19965  df-xmet 19966  df-met 19967  df-bl 19968  df-mopn 19969  df-fbas 19970  df-fg 19971  df-cnfld 19974  df-top 20932  df-topon 20949  df-topsp 20971  df-bases 20984  df-cld 21057  df-ntr 21058  df-cls 21059  df-nei 21136  df-lp 21174  df-perf 21175  df-cn 21265  df-cnp 21266  df-lm 21267  df-haus 21353  df-tx 21599  df-hmeo 21792  df-fil 21883  df-fm 21975  df-flim 21976  df-flf 21977  df-tmd 22109  df-tgp 22110  df-tsms 22163  df-trg 22196  df-xms 22358  df-ms 22359  df-tms 22360  df-nm 22620  df-ngp 22621  df-nrg 22623  df-nlm 22624  df-ii 22913  df-cncf 22914  df-limc 23866  df-dv 23867  df-log 24539  df-esum 30437
This theorem is referenced by:  esumcvg2  30496
  Copyright terms: Public domain W3C validator