Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Visualization version   GIF version

Theorem esumcvg 31347
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 15086. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
esumcvg.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
esumcvg.a ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
esumcvg.m (𝑘 = 𝑚𝐴 = 𝐵)
Assertion
Ref Expression
esumcvg (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑘,𝑛,𝐵   𝑘,𝑚,𝐹,𝑛   𝑘,𝐽,𝑛   𝜑,𝑘,𝑚,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑚)   𝐽(𝑚)

Proof of Theorem esumcvg
Dummy variables 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12284 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12016 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 1 ∈ ℤ)
3 simpr 487 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
4 rge0ssre 12847 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
5 ax-resscn 10596 . . . . . . . . 9 ℝ ⊆ ℂ
64, 5sstri 3978 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
7 esumcvg.m . . . . . . . . . . . . 13 (𝑘 = 𝑚𝐴 = 𝐵)
87eleq1d 2899 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴 ∈ (0[,)+∞) ↔ 𝐵 ∈ (0[,)+∞)))
98cbvralvw 3451 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
10 rsp 3207 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
119, 10sylbir 237 . . . . . . . . . 10 (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1211adantl 484 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1312imp 409 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
146, 13sseldi 3967 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
1514adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
16 esumcvg.f . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
17 fzfid 13344 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
18 elfznn 12939 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
1918, 13sylan2 594 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2019adantlr 713 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2117, 20esumpfinval 31336 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
2221mpteq2dva 5163 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
2316, 22syl5eq 2870 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
246, 20sseldi 3967 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
2517, 24fsumcl 15092 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ ℂ)
2623, 25fvmpt2d 6783 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
2726adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
281, 2, 3, 15, 27isumclim3 15116 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴)
29 esumcvg.j . . . . . 6 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
3017, 20fsumrp0cl 30684 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3121, 30eqeltrd 2915 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3231, 16fmptd 6880 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹:ℕ⟶(0[,)+∞))
3332adantr 483 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
34 simplll 773 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝜑)
35 eqidd 2824 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑚 ∈ ℕ ↦ 𝐵) = (𝑚 ∈ ℕ ↦ 𝐵))
36 eqcom 2830 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑚 = 𝑘)
37 eqcom 2830 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
387, 36, 373imtr3i 293 . . . . . . . . . . 11 (𝑚 = 𝑘𝐵 = 𝐴)
3938adantl 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 = 𝑘) → 𝐵 = 𝐴)
40 simpr 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 esumcvg.a . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
4235, 39, 40, 41fvmptd 6777 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4334, 42sylancom 590 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4413adantlr 713 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
45 elrege0 12845 . . . . . . . . . 10 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4644, 45sylib 220 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4746simpld 497 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
48 ovex 7191 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ V
49 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
5018adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
5149, 50, 41syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
5251ralrimiva 3184 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
53 nfcv 2979 . . . . . . . . . . . . . . . 16 𝑘(1...𝑛)
5453esumcl 31291 . . . . . . . . . . . . . . 15 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5548, 52, 54sylancr 589 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5655, 16fmptd 6880 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(0[,]+∞))
5756ffnd 6517 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
5857adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 Fn ℕ)
59 1z 12015 . . . . . . . . . . . . . 14 1 ∈ ℤ
60 seqfn 13384 . . . . . . . . . . . . . 14 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6159, 60ax-mp 5 . . . . . . . . . . . . 13 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
621fneq2i 6453 . . . . . . . . . . . . 13 (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6361, 62mpbir 233 . . . . . . . . . . . 12 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ)
65 simplll 773 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
6618, 42sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
6765, 66sylancom 590 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
68 simpr 487 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6968, 1eleqtrdi 2925 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
7067, 69, 24fsumser 15089 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7126, 70eqtrd 2858 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7258, 64, 71eqfnfvd 6807 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7372adantr 483 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7473, 3eqeltrrd 2916 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
751, 2, 43, 47, 74isumrecl 15122 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
7646simprd 498 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
771, 2, 43, 47, 74, 76isumge0 15123 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 0 ≤ Σ𝑘 ∈ ℕ 𝐴)
78 elrege0 12845 . . . . . . 7 𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ 𝐴))
7975, 77, 78sylanbrc 585 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞))
80 ssid 3991 . . . . . 6 (0[,)+∞) ⊆ (0[,)+∞)
8129, 33, 79, 80lmlimxrge0 31193 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴))
8228, 81mpbird 259 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴)
8316, 3eqeltrrid 2920 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8422eleq1d 2899 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8584adantr 483 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8683, 85mpbid 234 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8744, 7, 86esumpcvgval 31339 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
8882, 87breqtrrd 5096 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
8932adantr 483 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
90 simpr 487 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9190nnzd 12089 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
92 uzid 12261 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
93 peano2uz 12304 . . . . . . . 8 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
9491, 92, 933syl 18 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ (ℤ𝑛))
95 simplll 773 . . . . . . . 8 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
9695, 13sylancom 590 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
9790, 94, 96esumpmono 31340 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
9826, 21eqtr4d 2861 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
9998adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
100 oveq2 7166 . . . . . . . . . . 11 (𝑙 = 𝑛 → (1...𝑙) = (1...𝑛))
101 esumeq1 31295 . . . . . . . . . . 11 ((1...𝑙) = (1...𝑛) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
102100, 101syl 17 . . . . . . . . . 10 (𝑙 = 𝑛 → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
103102cbvmptv 5171 . . . . . . . . 9 (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
10416, 103eqtr4i 2849 . . . . . . . 8 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴)
105104a1i 11 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴))
106 simpr3 1192 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → 𝑙 = (𝑛 + 1))
107 oveq2 7166 . . . . . . . . 9 (𝑙 = (𝑛 + 1) → (1...𝑙) = (1...(𝑛 + 1)))
108 esumeq1 31295 . . . . . . . . 9 ((1...𝑙) = (1...(𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
109106, 107, 1083syl 18 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
1101093anassrs 1356 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = (𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
11190peano2nnd 11657 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
112 ovex 7191 . . . . . . . 8 (1...(𝑛 + 1)) ∈ V
113 simp-4l 781 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝜑)
114 elfznn 12939 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 + 1)) → 𝑘 ∈ ℕ)
115114adantl 484 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝑘 ∈ ℕ)
116113, 115, 41syl2anc 586 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (0[,]+∞))
117116ralrimiva 3184 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
118 nfcv 2979 . . . . . . . . 9 𝑘(1...(𝑛 + 1))
119118esumcl 31291 . . . . . . . 8 (((1...(𝑛 + 1)) ∈ V ∧ ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
120112, 117, 119sylancr 589 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
121105, 110, 111, 120fvmptd 6777 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
12297, 99, 1213brtr4d 5100 . . . . 5 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
123 simpr 487 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
12429, 89, 122, 123lmdvglim 31199 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽)+∞)
125 nfv 1915 . . . . . . 7 𝑘(𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
126 nfcv 2979 . . . . . . 7 𝑘
127 nnex 11646 . . . . . . . 8 ℕ ∈ V
128127a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ℕ ∈ V)
12941adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
130 simpr 487 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
131 simpll 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
132 inss1 4207 . . . . . . . . . . . . . 14 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
133 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
134132, 133sseldi 3967 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 ℕ)
135134elpwid 4552 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ⊆ ℕ)
136 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
137135, 136sseldd 3970 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘 ∈ ℕ)
138131, 137, 13syl2anc 586 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
139138fmpttd 6881 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑥𝐴):𝑥⟶(0[,)+∞))
140 esumpfinvallem 31335 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ∧ (𝑘𝑥𝐴):𝑥⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
141130, 139, 140syl2anc 586 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
142 inss2 4208 . . . . . . . . . 10 (𝒫 ℕ ∩ Fin) ⊆ Fin
143142, 130sseldi 3967 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
144131, 137, 14syl2anc 586 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℂ)
145143, 144gsumfsum 20614 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
146141, 145eqtr3d 2860 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
147125, 126, 128, 129, 146esumval 31307 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
148147adantr 483 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
14989, 122, 123lmdvg 31198 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
150149r19.21bi 3210 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
151 nnz 12007 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → 𝑙 ∈ ℤ)
152 uzid 12261 . . . . . . . . . . . . 13 (𝑙 ∈ ℤ → 𝑙 ∈ (ℤ𝑙))
153151, 152syl 17 . . . . . . . . . . . 12 (𝑙 ∈ ℕ → 𝑙 ∈ (ℤ𝑙))
154 simpr 487 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙)
155154fveq2d 6676 . . . . . . . . . . . . 13 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝐹𝑛) = (𝐹𝑙))
156155breq2d 5080 . . . . . . . . . . . 12 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝑦 < (𝐹𝑛) ↔ 𝑦 < (𝐹𝑙)))
157153, 156rspcdv 3617 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → 𝑦 < (𝐹𝑙)))
158157reximia 3244 . . . . . . . . . 10 (∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
159150, 158syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
160 simplr 767 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑦 ∈ ℝ)
16189ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
162 simpr 487 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
163161, 162ffvelrnd 6854 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ (0[,)+∞))
1644, 163sseldi 3967 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ ℝ)
165 ltle 10731 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑙) ∈ ℝ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
166160, 164, 165syl2anc 586 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
167 oveq2 7166 . . . . . . . . . . . . . . 15 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
168 esumeq1 31295 . . . . . . . . . . . . . . 15 ((1...𝑛) = (1...𝑙) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
169167, 168syl 17 . . . . . . . . . . . . . 14 (𝑛 = 𝑙 → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
170 esumex 31290 . . . . . . . . . . . . . . 15 Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V
171170a1i 11 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V)
17216, 169, 162, 171fvmptd3 6793 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ*𝑘 ∈ (1...𝑙)𝐴)
173 fzfid 13344 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
174 simp-4l 781 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
175 elfznn 12939 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
176175adantl 484 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℕ)
177174, 176, 13syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝐴 ∈ (0[,)+∞))
178173, 177esumpfinval 31336 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
179172, 178eqtrd 2858 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ𝑘 ∈ (1...𝑙)𝐴)
180179breq2d 5080 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
181166, 180sylibd 241 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
182181reximdva 3276 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → (∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
183159, 182mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴)
184 fzssuz 12951 . . . . . . . . . . . . . 14 (1...𝑙) ⊆ (ℤ‘1)
185184, 1sseqtrri 4006 . . . . . . . . . . . . 13 (1...𝑙) ⊆ ℕ
186 ovex 7191 . . . . . . . . . . . . . 14 (1...𝑙) ∈ V
187186elpw 4545 . . . . . . . . . . . . 13 ((1...𝑙) ∈ 𝒫 ℕ ↔ (1...𝑙) ⊆ ℕ)
188185, 187mpbir 233 . . . . . . . . . . . 12 (1...𝑙) ∈ 𝒫 ℕ
189 fzfi 13343 . . . . . . . . . . . 12 (1...𝑙) ∈ Fin
190 elin 4171 . . . . . . . . . . . 12 ((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑙) ∈ 𝒫 ℕ ∧ (1...𝑙) ∈ Fin))
191188, 189, 190mpbir2an 709 . . . . . . . . . . 11 (1...𝑙) ∈ (𝒫 ℕ ∩ Fin)
192 sumex 15046 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V
193 eqid 2823 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) = (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
194 sumeq1 15047 . . . . . . . . . . . 12 (𝑥 = (1...𝑙) → Σ𝑘𝑥 𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
195193, 194elrnmpt1s 5831 . . . . . . . . . . 11 (((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ∧ Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V) → Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴))
196191, 192, 195mp2an 690 . . . . . . . . . 10 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
197 nfv 1915 . . . . . . . . . . 11 𝑧 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴
198 breq2 5072 . . . . . . . . . . 11 (𝑧 = Σ𝑘 ∈ (1...𝑙)𝐴 → (𝑦𝑧𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
199197, 198rspce 3614 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ∧ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
200196, 199mpan 688 . . . . . . . . 9 (𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
201200rexlimivw 3284 . . . . . . . 8 (∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
202183, 201syl 17 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
203202ralrimiva 3184 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
204 simpr 487 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
205142, 204sseldi 3967 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
206138adantllr 717 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
2074, 206sseldi 3967 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℝ)
208205, 207fsumrecl 15093 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ)
209208rexrd 10693 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ*)
210209fmpttd 6881 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ*)
211 frn 6522 . . . . . . 7 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ* → ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ*)
212 supxrunb1 12715 . . . . . . 7 (ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
213210, 211, 2123syl 18 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
214203, 213mpbid 234 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞)
215148, 214eqtrd 2858 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
216124, 215breqtrrd 5096 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21788, 216pm2.61dan 811 . 2 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21816reseq1i 5851 . . . . . . . 8 (𝐹 ↾ (ℤ𝑘)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘))
219 eleq1w 2897 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 ∈ ℕ ↔ 𝑘 ∈ ℕ))
220219anbi2d 630 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝜑𝑙 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
221 sbequ12r 2254 . . . . . . . . . . 11 (𝑙 = 𝑘 → ([𝑙 / 𝑘]𝐴 = +∞ ↔ 𝐴 = +∞))
222220, 221anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ↔ ((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞)))
223 fveq2 6672 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
224223reseq2d 5855 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)))
225223xpeq1d 5586 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((ℤ𝑙) × {+∞}) = ((ℤ𝑘) × {+∞}))
226224, 225eqeq12d 2839 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}) ↔ ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
227222, 226imbi12d 347 . . . . . . . . 9 (𝑙 = 𝑘 → ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞})) ↔ (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))))
228 nfv 1915 . . . . . . . . . . . . . 14 𝑘(𝜑𝑙 ∈ ℕ)
229 nfs1v 2160 . . . . . . . . . . . . . 14 𝑘[𝑙 / 𝑘]𝐴 = +∞
230228, 229nfan 1900 . . . . . . . . . . . . 13 𝑘((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞)
231 nfv 1915 . . . . . . . . . . . . 13 𝑘 𝑛 ∈ (ℤ𝑙)
232230, 231nfan 1900 . . . . . . . . . . . 12 𝑘(((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙))
233 ovexd 7193 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → (1...𝑛) ∈ V)
234 simp-4l 781 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
23518adantl 484 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
236234, 235, 41syl2anc 586 . . . . . . . . . . . 12 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
237 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ ℕ)
238 elnnuz 12285 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ ↔ 𝑙 ∈ (ℤ‘1))
239 eluzfz 12906 . . . . . . . . . . . . . . 15 ((𝑙 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
240238, 239sylanb 583 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
241237, 240sylancom 590 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
242 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → [𝑙 / 𝑘]𝐴 = +∞)
243 sbequ12 2253 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐴 = +∞ ↔ [𝑙 / 𝑘]𝐴 = +∞))
244229, 243rspce 3614 . . . . . . . . . . . . 13 ((𝑙 ∈ (1...𝑛) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
245241, 242, 244syl2anc 586 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
246232, 233, 236, 245esumpinfval 31334 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → Σ*𝑘 ∈ (1...𝑛)𝐴 = +∞)
247246ralrimiva 3184 . . . . . . . . . 10 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞)
248 eqidd 2824 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → (ℤ𝑙) = (ℤ𝑙))
249 mpteq12 5155 . . . . . . . . . . . 12 (((ℤ𝑙) = (ℤ𝑙) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
250248, 249sylan 582 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
251 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → 𝑙 ∈ ℕ)
252 uznnssnn 12298 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
253 resmpt 5907 . . . . . . . . . . . . 13 ((ℤ𝑙) ⊆ ℕ → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
254251, 252, 2533syl 18 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
255254adantr 483 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
256 fconstmpt 5616 . . . . . . . . . . . 12 ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞)
257256a1i 11 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
258250, 255, 2573eqtr4d 2868 . . . . . . . . . 10 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
259247, 258mpdan 685 . . . . . . . . 9 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
260227, 259chvarvv 2005 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
261218, 260syl5eq 2870 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
262261ex 415 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 = +∞ → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
263262reximdva 3276 . . . . 5 (𝜑 → (∃𝑘 ∈ ℕ 𝐴 = +∞ → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
264263imp 409 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
265 xrge0topn 31188 . . . . . . . . . . 11 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
26629, 265eqtri 2846 . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
267 letopon 21815 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
268 iccssxr 12822 . . . . . . . . . . 11 (0[,]+∞) ⊆ ℝ*
269 resttopon 21771 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
270267, 268, 269mp2an 690 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
271266, 270eqeltri 2911 . . . . . . . . 9 𝐽 ∈ (TopOn‘(0[,]+∞))
272271a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐽 ∈ (TopOn‘(0[,]+∞)))
273 0xr 10690 . . . . . . . . . 10 0 ∈ ℝ*
274 pnfxr 10697 . . . . . . . . . 10 +∞ ∈ ℝ*
275 0lepnf 12530 . . . . . . . . . 10 0 ≤ +∞
276 ubicc2 12856 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
277273, 274, 275, 276mp3an 1457 . . . . . . . . 9 +∞ ∈ (0[,]+∞)
278277a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → +∞ ∈ (0[,]+∞))
27940nnzd 12089 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
280 eqid 2823 . . . . . . . . 9 (ℤ𝑘) = (ℤ𝑘)
281280lmconst 21871 . . . . . . . 8 ((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ +∞ ∈ (0[,]+∞) ∧ 𝑘 ∈ ℤ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
282272, 278, 279, 281syl3anc 1367 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
283 breq1 5071 . . . . . . . 8 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → ((𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞ ↔ ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞))
284283biimprd 250 . . . . . . 7 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → (((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞ → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
285282, 284mpan9 509 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞)
286 ovexd 7193 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (0[,]+∞) ∈ V)
287 cnex 10620 . . . . . . . . . 10 ℂ ∈ V
288287a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℂ ∈ V)
28956adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
290 nnsscn 11645 . . . . . . . . . 10 ℕ ⊆ ℂ
291290a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℕ ⊆ ℂ)
292 elpm2r 8426 . . . . . . . . 9 ((((0[,]+∞) ∈ V ∧ ℂ ∈ V) ∧ (𝐹:ℕ⟶(0[,]+∞) ∧ ℕ ⊆ ℂ)) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
293286, 288, 289, 291, 292syl22anc 836 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
294272, 293, 279lmres 21910 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹(⇝𝑡𝐽)+∞ ↔ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
295294biimpar 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞) → 𝐹(⇝𝑡𝐽)+∞)
296285, 295syldan 593 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
297296r19.29an 3290 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
298264, 297syldan 593 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽)+∞)
299 nfv 1915 . . . . 5 𝑘𝜑
300 nfre1 3308 . . . . 5 𝑘𝑘 ∈ ℕ 𝐴 = +∞
301299, 300nfan 1900 . . . 4 𝑘(𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞)
302127a1i 11 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ℕ ∈ V)
30341adantlr 713 . . . 4 (((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
304 simpr 487 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ 𝐴 = +∞)
305301, 302, 303, 304esumpinfval 31334 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
306298, 305breqtrrd 5096 . 2 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
307 eleq1w 2897 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 ∈ ℕ ↔ 𝑚 ∈ ℕ))
308307anbi2d 630 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑚 ∈ ℕ)))
3097eleq1d 2899 . . . . . . . 8 (𝑘 = 𝑚 → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
310308, 309imbi12d 347 . . . . . . 7 (𝑘 = 𝑚 → (((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))))
311310, 41chvarvv 2005 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))
312 eliccelico 30502 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞)))
313273, 274, 275, 312mp3an 1457 . . . . . 6 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
314311, 313sylib 220 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
315314ralrimiva 3184 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
316 r19.30 3340 . . . 4 (∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞) → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
317315, 316syl 17 . . 3 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
3187eqeq1d 2825 . . . . 5 (𝑘 = 𝑚 → (𝐴 = +∞ ↔ 𝐵 = +∞))
319318cbvrexvw 3452 . . . 4 (∃𝑘 ∈ ℕ 𝐴 = +∞ ↔ ∃𝑚 ∈ ℕ 𝐵 = +∞)
320319orbi2i 909 . . 3 ((∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞) ↔ (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
321317, 320sylibr 236 . 2 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞))
322217, 306, 321mpjaodan 955 1 (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  [wsb 2069  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  dom cdm 5557  ran crn 5558  cres 5559   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  pm cpm 8409  Fincfn 8511  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cn 11640  cz 11984  cuz 12246  [,)cico 12743  [,]cicc 12744  ...cfz 12895  seqcseq 13372  cli 14843  Σcsu 15044  s cress 16486  t crest 16696  TopOpenctopn 16697   Σg cgsu 16716  ordTopcordt 16774  *𝑠cxrs 16775  fldccnfld 20547  TopOnctopon 21520  𝑡clm 21836  Σ*cesum 31288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-ordt 16776  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-plusf 17853  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-abv 19590  df-lmod 19638  df-scaf 19639  df-sra 19946  df-rgmod 19947  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-lm 21839  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tmd 22682  df-tgp 22683  df-tsms 22737  df-trg 22770  df-xms 22932  df-ms 22933  df-tms 22934  df-nm 23194  df-ngp 23195  df-nrg 23197  df-nlm 23198  df-ii 23487  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-esum 31289
This theorem is referenced by:  esumcvg2  31348
  Copyright terms: Public domain W3C validator