Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Visualization version   GIF version

Theorem esumcvg 32685
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 15612. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
esumcvg.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
esumcvg.a ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
esumcvg.m (𝑘 = 𝑚𝐴 = 𝐵)
Assertion
Ref Expression
esumcvg (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑘,𝑛,𝐵   𝑘,𝑚,𝐹,𝑛   𝑘,𝐽,𝑛   𝜑,𝑘,𝑚,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑚)   𝐽(𝑚)

Proof of Theorem esumcvg
Dummy variables 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12534 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 1 ∈ ℤ)
3 simpr 485 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
4 rge0ssre 13373 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
5 ax-resscn 11108 . . . . . . . . 9 ℝ ⊆ ℂ
64, 5sstri 3953 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
7 esumcvg.m . . . . . . . . . . . . 13 (𝑘 = 𝑚𝐴 = 𝐵)
87eleq1d 2822 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴 ∈ (0[,)+∞) ↔ 𝐵 ∈ (0[,)+∞)))
98cbvralvw 3225 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
10 rsp 3230 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
119, 10sylbir 234 . . . . . . . . . 10 (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1211adantl 482 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1312imp 407 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
146, 13sselid 3942 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
1514adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
16 esumcvg.f . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
17 fzfid 13878 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
18 elfznn 13470 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
1918, 13sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2019adantlr 713 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2117, 20esumpfinval 32674 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
2221mpteq2dva 5205 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
2316, 22eqtrid 2788 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
246, 20sselid 3942 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
2517, 24fsumcl 15618 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ ℂ)
2623, 25fvmpt2d 6961 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
2726adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
281, 2, 3, 15, 27isumclim3 15644 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴)
29 esumcvg.j . . . . . 6 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
3017, 20fsumrp0cl 31886 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3121, 30eqeltrd 2838 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3231, 16fmptd 7062 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹:ℕ⟶(0[,)+∞))
3332adantr 481 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
34 simplll 773 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝜑)
35 eqidd 2737 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑚 ∈ ℕ ↦ 𝐵) = (𝑚 ∈ ℕ ↦ 𝐵))
36 eqcom 2743 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑚 = 𝑘)
37 eqcom 2743 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
387, 36, 373imtr3i 290 . . . . . . . . . . 11 (𝑚 = 𝑘𝐵 = 𝐴)
3938adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 = 𝑘) → 𝐵 = 𝐴)
40 simpr 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 esumcvg.a . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
4235, 39, 40, 41fvmptd 6955 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4334, 42sylancom 588 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4413adantlr 713 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
45 elrege0 13371 . . . . . . . . . 10 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4644, 45sylib 217 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4746simpld 495 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
48 ovex 7390 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ V
49 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
5018adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
5149, 50, 41syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
5251ralrimiva 3143 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
53 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑘(1...𝑛)
5453esumcl 32629 . . . . . . . . . . . . . . 15 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5548, 52, 54sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5655, 16fmptd 7062 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(0[,]+∞))
5756ffnd 6669 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
5857adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 Fn ℕ)
59 1z 12533 . . . . . . . . . . . . . 14 1 ∈ ℤ
60 seqfn 13918 . . . . . . . . . . . . . 14 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6159, 60ax-mp 5 . . . . . . . . . . . . 13 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
621fneq2i 6600 . . . . . . . . . . . . 13 (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6361, 62mpbir 230 . . . . . . . . . . . 12 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ)
65 simplll 773 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
6618, 42sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
6765, 66sylancom 588 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
68 simpr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6968, 1eleqtrdi 2848 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
7067, 69, 24fsumser 15615 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7126, 70eqtrd 2776 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7258, 64, 71eqfnfvd 6985 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7372adantr 481 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7473, 3eqeltrrd 2839 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
751, 2, 43, 47, 74isumrecl 15650 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
7646simprd 496 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
771, 2, 43, 47, 74, 76isumge0 15651 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 0 ≤ Σ𝑘 ∈ ℕ 𝐴)
78 elrege0 13371 . . . . . . 7 𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ 𝐴))
7975, 77, 78sylanbrc 583 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞))
80 ssid 3966 . . . . . 6 (0[,)+∞) ⊆ (0[,)+∞)
8129, 33, 79, 80lmlimxrge0 32529 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴))
8228, 81mpbird 256 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴)
8316, 3eqeltrrid 2843 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8422eleq1d 2822 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8584adantr 481 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8683, 85mpbid 231 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8744, 7, 86esumpcvgval 32677 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
8882, 87breqtrrd 5133 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
8932adantr 481 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
90 simpr 485 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9190nnzd 12526 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
92 uzid 12778 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
93 peano2uz 12826 . . . . . . . 8 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
9491, 92, 933syl 18 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ (ℤ𝑛))
95 simplll 773 . . . . . . . 8 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
9695, 13sylancom 588 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
9790, 94, 96esumpmono 32678 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
9826, 21eqtr4d 2779 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
9998adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
100 oveq2 7365 . . . . . . . . . . 11 (𝑙 = 𝑛 → (1...𝑙) = (1...𝑛))
101 esumeq1 32633 . . . . . . . . . . 11 ((1...𝑙) = (1...𝑛) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
102100, 101syl 17 . . . . . . . . . 10 (𝑙 = 𝑛 → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
103102cbvmptv 5218 . . . . . . . . 9 (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
10416, 103eqtr4i 2767 . . . . . . . 8 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴)
105104a1i 11 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴))
106 simpr3 1196 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → 𝑙 = (𝑛 + 1))
107 oveq2 7365 . . . . . . . . 9 (𝑙 = (𝑛 + 1) → (1...𝑙) = (1...(𝑛 + 1)))
108 esumeq1 32633 . . . . . . . . 9 ((1...𝑙) = (1...(𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
109106, 107, 1083syl 18 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
1101093anassrs 1360 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = (𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
11190peano2nnd 12170 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
112 ovex 7390 . . . . . . . 8 (1...(𝑛 + 1)) ∈ V
113 simp-4l 781 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝜑)
114 elfznn 13470 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 + 1)) → 𝑘 ∈ ℕ)
115114adantl 482 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝑘 ∈ ℕ)
116113, 115, 41syl2anc 584 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (0[,]+∞))
117116ralrimiva 3143 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
118 nfcv 2907 . . . . . . . . 9 𝑘(1...(𝑛 + 1))
119118esumcl 32629 . . . . . . . 8 (((1...(𝑛 + 1)) ∈ V ∧ ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
120112, 117, 119sylancr 587 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
121105, 110, 111, 120fvmptd 6955 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
12297, 99, 1213brtr4d 5137 . . . . 5 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
123 simpr 485 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
12429, 89, 122, 123lmdvglim 32535 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽)+∞)
125 nfv 1917 . . . . . . 7 𝑘(𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
126 nfcv 2907 . . . . . . 7 𝑘
127 nnex 12159 . . . . . . . 8 ℕ ∈ V
128127a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ℕ ∈ V)
12941adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
130 simpr 485 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
131 simpll 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
132 inss1 4188 . . . . . . . . . . . . . 14 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
133 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
134132, 133sselid 3942 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 ℕ)
135134elpwid 4569 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ⊆ ℕ)
136 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
137135, 136sseldd 3945 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘 ∈ ℕ)
138131, 137, 13syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
139138fmpttd 7063 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑥𝐴):𝑥⟶(0[,)+∞))
140 esumpfinvallem 32673 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ∧ (𝑘𝑥𝐴):𝑥⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
141130, 139, 140syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
142 inss2 4189 . . . . . . . . . 10 (𝒫 ℕ ∩ Fin) ⊆ Fin
143142, 130sselid 3942 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
144131, 137, 14syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℂ)
145143, 144gsumfsum 20864 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
146141, 145eqtr3d 2778 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
147125, 126, 128, 129, 146esumval 32645 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
148147adantr 481 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
14989, 122, 123lmdvg 32534 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
150149r19.21bi 3234 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
151 nnz 12520 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → 𝑙 ∈ ℤ)
152 uzid 12778 . . . . . . . . . . . . 13 (𝑙 ∈ ℤ → 𝑙 ∈ (ℤ𝑙))
153151, 152syl 17 . . . . . . . . . . . 12 (𝑙 ∈ ℕ → 𝑙 ∈ (ℤ𝑙))
154 simpr 485 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙)
155154fveq2d 6846 . . . . . . . . . . . . 13 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝐹𝑛) = (𝐹𝑙))
156155breq2d 5117 . . . . . . . . . . . 12 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝑦 < (𝐹𝑛) ↔ 𝑦 < (𝐹𝑙)))
157153, 156rspcdv 3573 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → 𝑦 < (𝐹𝑙)))
158157reximia 3084 . . . . . . . . . 10 (∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
159150, 158syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
160 simplr 767 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑦 ∈ ℝ)
16189ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
162 simpr 485 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
163161, 162ffvelcdmd 7036 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ (0[,)+∞))
1644, 163sselid 3942 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ ℝ)
165 ltle 11243 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑙) ∈ ℝ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
166160, 164, 165syl2anc 584 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
167 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
168 esumeq1 32633 . . . . . . . . . . . . . . 15 ((1...𝑛) = (1...𝑙) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
169167, 168syl 17 . . . . . . . . . . . . . 14 (𝑛 = 𝑙 → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
170 esumex 32628 . . . . . . . . . . . . . . 15 Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V
171170a1i 11 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V)
17216, 169, 162, 171fvmptd3 6971 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ*𝑘 ∈ (1...𝑙)𝐴)
173 fzfid 13878 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
174 simp-4l 781 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
175 elfznn 13470 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
176175adantl 482 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℕ)
177174, 176, 13syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝐴 ∈ (0[,)+∞))
178173, 177esumpfinval 32674 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
179172, 178eqtrd 2776 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ𝑘 ∈ (1...𝑙)𝐴)
180179breq2d 5117 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
181166, 180sylibd 238 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
182181reximdva 3165 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → (∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
183159, 182mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴)
184 fzssuz 13482 . . . . . . . . . . . . . 14 (1...𝑙) ⊆ (ℤ‘1)
185184, 1sseqtrri 3981 . . . . . . . . . . . . 13 (1...𝑙) ⊆ ℕ
186 ovex 7390 . . . . . . . . . . . . . 14 (1...𝑙) ∈ V
187186elpw 4564 . . . . . . . . . . . . 13 ((1...𝑙) ∈ 𝒫 ℕ ↔ (1...𝑙) ⊆ ℕ)
188185, 187mpbir 230 . . . . . . . . . . . 12 (1...𝑙) ∈ 𝒫 ℕ
189 fzfi 13877 . . . . . . . . . . . 12 (1...𝑙) ∈ Fin
190 elin 3926 . . . . . . . . . . . 12 ((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑙) ∈ 𝒫 ℕ ∧ (1...𝑙) ∈ Fin))
191188, 189, 190mpbir2an 709 . . . . . . . . . . 11 (1...𝑙) ∈ (𝒫 ℕ ∩ Fin)
192 sumex 15572 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V
193 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) = (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
194 sumeq1 15573 . . . . . . . . . . . 12 (𝑥 = (1...𝑙) → Σ𝑘𝑥 𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
195193, 194elrnmpt1s 5912 . . . . . . . . . . 11 (((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ∧ Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V) → Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴))
196191, 192, 195mp2an 690 . . . . . . . . . 10 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
197 nfv 1917 . . . . . . . . . . 11 𝑧 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴
198 breq2 5109 . . . . . . . . . . 11 (𝑧 = Σ𝑘 ∈ (1...𝑙)𝐴 → (𝑦𝑧𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
199197, 198rspce 3570 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ∧ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
200196, 199mpan 688 . . . . . . . . 9 (𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
201200rexlimivw 3148 . . . . . . . 8 (∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
202183, 201syl 17 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
203202ralrimiva 3143 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
204 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
205142, 204sselid 3942 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
206138adantllr 717 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
2074, 206sselid 3942 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℝ)
208205, 207fsumrecl 15619 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ)
209208rexrd 11205 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ*)
210209fmpttd 7063 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ*)
211 frn 6675 . . . . . . 7 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ* → ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ*)
212 supxrunb1 13238 . . . . . . 7 (ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
213210, 211, 2123syl 18 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
214203, 213mpbid 231 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞)
215148, 214eqtrd 2776 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
216124, 215breqtrrd 5133 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21788, 216pm2.61dan 811 . 2 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21816reseq1i 5933 . . . . . . . 8 (𝐹 ↾ (ℤ𝑘)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘))
219 eleq1w 2820 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 ∈ ℕ ↔ 𝑘 ∈ ℕ))
220219anbi2d 629 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝜑𝑙 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
221 sbequ12r 2244 . . . . . . . . . . 11 (𝑙 = 𝑘 → ([𝑙 / 𝑘]𝐴 = +∞ ↔ 𝐴 = +∞))
222220, 221anbi12d 631 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ↔ ((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞)))
223 fveq2 6842 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
224223reseq2d 5937 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)))
225223xpeq1d 5662 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((ℤ𝑙) × {+∞}) = ((ℤ𝑘) × {+∞}))
226224, 225eqeq12d 2752 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}) ↔ ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
227222, 226imbi12d 344 . . . . . . . . 9 (𝑙 = 𝑘 → ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞})) ↔ (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))))
228 nfv 1917 . . . . . . . . . . . . . 14 𝑘(𝜑𝑙 ∈ ℕ)
229 nfs1v 2153 . . . . . . . . . . . . . 14 𝑘[𝑙 / 𝑘]𝐴 = +∞
230228, 229nfan 1902 . . . . . . . . . . . . 13 𝑘((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞)
231 nfv 1917 . . . . . . . . . . . . 13 𝑘 𝑛 ∈ (ℤ𝑙)
232230, 231nfan 1902 . . . . . . . . . . . 12 𝑘(((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙))
233 ovexd 7392 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → (1...𝑛) ∈ V)
234 simp-4l 781 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
23518adantl 482 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
236234, 235, 41syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
237 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ ℕ)
238 elnnuz 12807 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ ↔ 𝑙 ∈ (ℤ‘1))
239 eluzfz 13436 . . . . . . . . . . . . . . 15 ((𝑙 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
240238, 239sylanb 581 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
241237, 240sylancom 588 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
242 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → [𝑙 / 𝑘]𝐴 = +∞)
243 sbequ12 2243 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐴 = +∞ ↔ [𝑙 / 𝑘]𝐴 = +∞))
244229, 243rspce 3570 . . . . . . . . . . . . 13 ((𝑙 ∈ (1...𝑛) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
245241, 242, 244syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
246232, 233, 236, 245esumpinfval 32672 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → Σ*𝑘 ∈ (1...𝑛)𝐴 = +∞)
247246ralrimiva 3143 . . . . . . . . . 10 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞)
248 eqidd 2737 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → (ℤ𝑙) = (ℤ𝑙))
249 mpteq12 5197 . . . . . . . . . . . 12 (((ℤ𝑙) = (ℤ𝑙) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
250248, 249sylan 580 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
251 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → 𝑙 ∈ ℕ)
252 uznnssnn 12820 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
253 resmpt 5991 . . . . . . . . . . . . 13 ((ℤ𝑙) ⊆ ℕ → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
254251, 252, 2533syl 18 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
255254adantr 481 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
256 fconstmpt 5694 . . . . . . . . . . . 12 ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞)
257256a1i 11 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
258250, 255, 2573eqtr4d 2786 . . . . . . . . . 10 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
259247, 258mpdan 685 . . . . . . . . 9 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
260227, 259chvarvv 2002 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
261218, 260eqtrid 2788 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
262261ex 413 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 = +∞ → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
263262reximdva 3165 . . . . 5 (𝜑 → (∃𝑘 ∈ ℕ 𝐴 = +∞ → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
264263imp 407 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
265 xrge0topn 32524 . . . . . . . . . . 11 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
26629, 265eqtri 2764 . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
267 letopon 22556 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
268 iccssxr 13347 . . . . . . . . . . 11 (0[,]+∞) ⊆ ℝ*
269 resttopon 22512 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
270267, 268, 269mp2an 690 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
271266, 270eqeltri 2834 . . . . . . . . 9 𝐽 ∈ (TopOn‘(0[,]+∞))
272271a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐽 ∈ (TopOn‘(0[,]+∞)))
273 0xr 11202 . . . . . . . . . 10 0 ∈ ℝ*
274 pnfxr 11209 . . . . . . . . . 10 +∞ ∈ ℝ*
275 0lepnf 13053 . . . . . . . . . 10 0 ≤ +∞
276 ubicc2 13382 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
277273, 274, 275, 276mp3an 1461 . . . . . . . . 9 +∞ ∈ (0[,]+∞)
278277a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → +∞ ∈ (0[,]+∞))
27940nnzd 12526 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
280 eqid 2736 . . . . . . . . 9 (ℤ𝑘) = (ℤ𝑘)
281280lmconst 22612 . . . . . . . 8 ((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ +∞ ∈ (0[,]+∞) ∧ 𝑘 ∈ ℤ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
282272, 278, 279, 281syl3anc 1371 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
283 breq1 5108 . . . . . . . 8 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → ((𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞ ↔ ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞))
284283biimprd 247 . . . . . . 7 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → (((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞ → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
285282, 284mpan9 507 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞)
286 ovexd 7392 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (0[,]+∞) ∈ V)
287 cnex 11132 . . . . . . . . . 10 ℂ ∈ V
288287a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℂ ∈ V)
28956adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
290 nnsscn 12158 . . . . . . . . . 10 ℕ ⊆ ℂ
291290a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℕ ⊆ ℂ)
292 elpm2r 8783 . . . . . . . . 9 ((((0[,]+∞) ∈ V ∧ ℂ ∈ V) ∧ (𝐹:ℕ⟶(0[,]+∞) ∧ ℕ ⊆ ℂ)) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
293286, 288, 289, 291, 292syl22anc 837 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
294272, 293, 279lmres 22651 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹(⇝𝑡𝐽)+∞ ↔ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
295294biimpar 478 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞) → 𝐹(⇝𝑡𝐽)+∞)
296285, 295syldan 591 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
297296r19.29an 3155 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
298264, 297syldan 591 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽)+∞)
299 nfv 1917 . . . . 5 𝑘𝜑
300 nfre1 3268 . . . . 5 𝑘𝑘 ∈ ℕ 𝐴 = +∞
301299, 300nfan 1902 . . . 4 𝑘(𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞)
302127a1i 11 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ℕ ∈ V)
30341adantlr 713 . . . 4 (((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
304 simpr 485 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ 𝐴 = +∞)
305301, 302, 303, 304esumpinfval 32672 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
306298, 305breqtrrd 5133 . 2 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
307 eleq1w 2820 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 ∈ ℕ ↔ 𝑚 ∈ ℕ))
308307anbi2d 629 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑚 ∈ ℕ)))
3097eleq1d 2822 . . . . . . . 8 (𝑘 = 𝑚 → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
310308, 309imbi12d 344 . . . . . . 7 (𝑘 = 𝑚 → (((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))))
311310, 41chvarvv 2002 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))
312 eliccelico 31680 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞)))
313273, 274, 275, 312mp3an 1461 . . . . . 6 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
314311, 313sylib 217 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
315314ralrimiva 3143 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
316 r19.30 3123 . . . 4 (∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞) → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
317315, 316syl 17 . . 3 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
3187eqeq1d 2738 . . . . 5 (𝑘 = 𝑚 → (𝐴 = +∞ ↔ 𝐵 = +∞))
319318cbvrexvw 3226 . . . 4 (∃𝑘 ∈ ℕ 𝐴 = +∞ ↔ ∃𝑚 ∈ ℕ 𝐵 = +∞)
320319orbi2i 911 . . 3 ((∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞) ↔ (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
321317, 320sylibr 233 . 2 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞))
322217, 306, 321mpjaodan 957 1 (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  [wsb 2067  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  ran crn 5634  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  pm cpm 8766  Fincfn 8883  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cn 12153  cz 12499  cuz 12763  [,)cico 13266  [,]cicc 13267  ...cfz 13424  seqcseq 13906  cli 15366  Σcsu 15570  s cress 17112  t crest 17302  TopOpenctopn 17303   Σg cgsu 17322  ordTopcordt 17381  *𝑠cxrs 17382  fldccnfld 20796  TopOnctopon 22259  𝑡clm 22577  Σ*cesum 32626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-ordt 17383  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-ps 18455  df-tsr 18456  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-abv 20276  df-lmod 20324  df-scaf 20325  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-lm 22580  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tmd 23423  df-tgp 23424  df-tsms 23478  df-trg 23511  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-nrg 23941  df-nlm 23942  df-ii 24240  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-esum 32627
This theorem is referenced by:  esumcvg2  32686
  Copyright terms: Public domain W3C validator