MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralim Structured version   Visualization version   GIF version

Theorem ralim 3072
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.)
Assertion
Ref Expression
ralim (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ralim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ral2imi 3071 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ral 3048
This theorem is referenced by:  ralimdaa  3233  mpteqb  6943  tz7.49  8359  mptelixpg  8854  resixpfo  8855  bnd  9780  kmlem12  10048  lbzbi  12829  r19.29uz  15253  caubnd  15261  alzdvds  16226  ptclsg  23525  isucn2  24188  fusgreghash2wsp  30310  omssubadd  34305  trssfir1om  35114  r1omhfb  35115  trssfir1omregs  35124  r1omhfbregs  35125  subgrwlk  35168  dfon2lem8  35824  fvineqsneq  37446  dford3lem2  43060  neik0pk1imk0  44080  grur1cld  44265  mnuprdlem4  44308  mnurndlem1  44314
  Copyright terms: Public domain W3C validator