MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralim Structured version   Visualization version   GIF version

Theorem ralim 3092
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.)
Assertion
Ref Expression
ralim (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ralim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ral2imi 3091 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ral 3068
This theorem is referenced by:  r19.30OLD  3127  ralimdaa  3266  mpteqb  7048  tz7.49  8501  mptelixpg  8993  resixpfo  8994  bnd  9961  kmlem12  10231  lbzbi  13001  r19.29uz  15399  caubnd  15407  alzdvds  16368  ptclsg  23644  isucn2  24309  fusgreghash2wsp  30370  omssubadd  34265  subgrwlk  35100  dfon2lem8  35754  fvineqsneq  37378  dford3lem2  42984  neik0pk1imk0  44009  grur1cld  44201  mnuprdlem4  44244  mnurndlem1  44250
  Copyright terms: Public domain W3C validator