MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralim Structured version   Visualization version   GIF version

Theorem ralim 3083
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.)
Assertion
Ref Expression
ralim (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ralim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ral2imi 3082 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ral 3069
This theorem is referenced by:  ralimdaa  3142  r19.30OLD  3269  mpteqb  6894  tz7.49  8276  mptelixpg  8723  resixpfo  8724  bnd  9650  kmlem12  9917  lbzbi  12676  r19.29uz  15062  caubnd  15070  alzdvds  16029  ptclsg  22766  isucn2  23431  fusgreghash2wsp  28702  omssubadd  32267  subgrwlk  33094  dfon2lem8  33766  fvineqsneq  35583  dford3lem2  40849  neik0pk1imk0  41657  grur1cld  41850  mnuprdlem4  41893  mnurndlem1  41899
  Copyright terms: Public domain W3C validator