| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version | ||
| Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3068 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimdaa 3238 mpteqb 6987 tz7.49 8413 mptelixpg 8908 resixpfo 8909 bnd 9845 kmlem12 10115 lbzbi 12895 r19.29uz 15317 caubnd 15325 alzdvds 16290 ptclsg 23502 isucn2 24166 fusgreghash2wsp 30267 omssubadd 34291 subgrwlk 35119 dfon2lem8 35778 fvineqsneq 37400 dford3lem2 43016 neik0pk1imk0 44036 grur1cld 44221 mnuprdlem4 44264 mnurndlem1 44270 |
| Copyright terms: Public domain | W3C validator |