Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version |
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3081 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: ralimdaa 3140 r19.30OLD 3266 mpteqb 6876 tz7.49 8246 mptelixpg 8681 resixpfo 8682 bnd 9581 kmlem12 9848 lbzbi 12605 r19.29uz 14990 caubnd 14998 alzdvds 15957 ptclsg 22674 isucn2 23339 fusgreghash2wsp 28603 omssubadd 32167 subgrwlk 32994 dfon2lem8 33672 fvineqsneq 35510 dford3lem2 40765 neik0pk1imk0 41546 grur1cld 41739 mnuprdlem4 41782 mnurndlem1 41788 |
Copyright terms: Public domain | W3C validator |