| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version | ||
| Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3076 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3053 |
| This theorem is referenced by: ralimdaa 3247 mpteqb 7010 tz7.49 8464 mptelixpg 8954 resixpfo 8955 bnd 9911 kmlem12 10181 lbzbi 12957 r19.29uz 15374 caubnd 15382 alzdvds 16344 ptclsg 23558 isucn2 24222 fusgreghash2wsp 30324 omssubadd 34337 subgrwlk 35159 dfon2lem8 35813 fvineqsneq 37435 dford3lem2 43018 neik0pk1imk0 44038 grur1cld 44223 mnuprdlem4 44266 mnurndlem1 44272 |
| Copyright terms: Public domain | W3C validator |