MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralim Structured version   Visualization version   GIF version

Theorem ralim 3087
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.)
Assertion
Ref Expression
ralim (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ralim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ral2imi 3086 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ral 3063
This theorem is referenced by:  r19.30OLD  3122  ralimdaa  3258  mpteqb  7018  tz7.49  8445  mptelixpg  8929  resixpfo  8930  bnd  9887  kmlem12  10156  lbzbi  12920  r19.29uz  15297  caubnd  15305  alzdvds  16263  ptclsg  23119  isucn2  23784  fusgreghash2wsp  29591  omssubadd  33299  subgrwlk  34123  dfon2lem8  34762  fvineqsneq  36293  dford3lem2  41766  neik0pk1imk0  42798  grur1cld  42991  mnuprdlem4  43034  mnurndlem1  43040
  Copyright terms: Public domain W3C validator