![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version |
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3086 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: r19.30OLD 3122 ralimdaa 3258 mpteqb 7018 tz7.49 8445 mptelixpg 8929 resixpfo 8930 bnd 9887 kmlem12 10156 lbzbi 12920 r19.29uz 15297 caubnd 15305 alzdvds 16263 ptclsg 23119 isucn2 23784 fusgreghash2wsp 29591 omssubadd 33299 subgrwlk 34123 dfon2lem8 34762 fvineqsneq 36293 dford3lem2 41766 neik0pk1imk0 42798 grur1cld 42991 mnuprdlem4 43034 mnurndlem1 43040 |
Copyright terms: Public domain | W3C validator |