MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralim Structured version   Visualization version   GIF version

Theorem ralim 3069
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.)
Assertion
Ref Expression
ralim (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ralim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ral2imi 3068 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3045
This theorem is referenced by:  ralimdaa  3236  mpteqb  6969  tz7.49  8390  mptelixpg  8885  resixpfo  8886  bnd  9821  kmlem12  10091  lbzbi  12871  r19.29uz  15293  caubnd  15301  alzdvds  16266  ptclsg  23478  isucn2  24142  fusgreghash2wsp  30240  omssubadd  34264  subgrwlk  35092  dfon2lem8  35751  fvineqsneq  37373  dford3lem2  42989  neik0pk1imk0  44009  grur1cld  44194  mnuprdlem4  44237  mnurndlem1  44243
  Copyright terms: Public domain W3C validator