Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version |
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3088 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-ral 3075 |
This theorem is referenced by: ralimdaa 3145 r19.30 3258 mpteqb 6778 tz7.49 8091 mptelixpg 8517 resixpfo 8518 bnd 9354 kmlem12 9621 lbzbi 12376 r19.29uz 14758 caubnd 14766 alzdvds 15721 ptclsg 22315 isucn2 22980 fusgreghash2wsp 28222 omssubadd 31786 subgrwlk 32610 dfon2lem8 33282 fvineqsneq 35109 dford3lem2 40341 neik0pk1imk0 41123 grur1cld 41313 mnuprdlem4 41356 mnurndlem1 41362 |
Copyright terms: Public domain | W3C validator |