| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version | ||
| Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3072 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3049 |
| This theorem is referenced by: ralimdaa 3234 mpteqb 6957 tz7.49 8373 mptelixpg 8869 resixpfo 8870 bnd 9796 kmlem12 10064 lbzbi 12840 r19.29uz 15265 caubnd 15273 alzdvds 16238 ptclsg 23550 isucn2 24213 fusgreghash2wsp 30339 omssubadd 34385 trssfir1om 35194 r1omhfb 35195 trssfir1omregs 35204 r1omhfbregs 35205 subgrwlk 35248 dfon2lem8 35904 fvineqsneq 37529 dford3lem2 43184 neik0pk1imk0 44204 grur1cld 44389 mnuprdlem4 44432 mnurndlem1 44438 |
| Copyright terms: Public domain | W3C validator |