| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version | ||
| Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3071 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: ralimdaa 3233 mpteqb 6943 tz7.49 8359 mptelixpg 8854 resixpfo 8855 bnd 9780 kmlem12 10048 lbzbi 12829 r19.29uz 15253 caubnd 15261 alzdvds 16226 ptclsg 23525 isucn2 24188 fusgreghash2wsp 30310 omssubadd 34305 trssfir1om 35114 r1omhfb 35115 trssfir1omregs 35124 r1omhfbregs 35125 subgrwlk 35168 dfon2lem8 35824 fvineqsneq 37446 dford3lem2 43060 neik0pk1imk0 44080 grur1cld 44265 mnuprdlem4 44308 mnurndlem1 44314 |
| Copyright terms: Public domain | W3C validator |