| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version | ||
| Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ral2imi 3068 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimdaa 3230 mpteqb 6953 tz7.49 8374 mptelixpg 8869 resixpfo 8870 bnd 9807 kmlem12 10075 lbzbi 12856 r19.29uz 15277 caubnd 15285 alzdvds 16250 ptclsg 23519 isucn2 24183 fusgreghash2wsp 30301 omssubadd 34287 subgrwlk 35124 dfon2lem8 35783 fvineqsneq 37405 dford3lem2 43020 neik0pk1imk0 44040 grur1cld 44225 mnuprdlem4 44268 mnurndlem1 44274 |
| Copyright terms: Public domain | W3C validator |