Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version |
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3082 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3069 |
This theorem is referenced by: ralimdaa 3142 r19.30OLD 3269 mpteqb 6894 tz7.49 8276 mptelixpg 8723 resixpfo 8724 bnd 9650 kmlem12 9917 lbzbi 12676 r19.29uz 15062 caubnd 15070 alzdvds 16029 ptclsg 22766 isucn2 23431 fusgreghash2wsp 28702 omssubadd 32267 subgrwlk 33094 dfon2lem8 33766 fvineqsneq 35583 dford3lem2 40849 neik0pk1imk0 41657 grur1cld 41850 mnuprdlem4 41893 mnurndlem1 41899 |
Copyright terms: Public domain | W3C validator |