![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version |
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 3091 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: r19.30OLD 3127 ralimdaa 3266 mpteqb 7048 tz7.49 8501 mptelixpg 8993 resixpfo 8994 bnd 9961 kmlem12 10231 lbzbi 13001 r19.29uz 15399 caubnd 15407 alzdvds 16368 ptclsg 23644 isucn2 24309 fusgreghash2wsp 30370 omssubadd 34265 subgrwlk 35100 dfon2lem8 35754 fvineqsneq 37378 dford3lem2 42984 neik0pk1imk0 44009 grur1cld 44201 mnuprdlem4 44244 mnurndlem1 44250 |
Copyright terms: Public domain | W3C validator |