Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfrec Structured version   Visualization version   GIF version

Theorem smfrec 43360
 Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfrec.x 𝑥𝜑
smfrec.s (𝜑𝑆 ∈ SAlg)
smfrec.a (𝜑𝐴𝑉)
smfrec.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfrec.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfrec.e 𝐶 = {𝑥𝐴𝐵 ≠ 0}
Assertion
Ref Expression
smfrec (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfrec.x . 2 𝑥𝜑
2 nfv 1915 . 2 𝑎𝜑
3 smfrec.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfrec.e . . . 4 𝐶 = {𝑥𝐴𝐵 ≠ 0}
5 ssrab2 4031 . . . 4 {𝑥𝐴𝐵 ≠ 0} ⊆ 𝐴
64, 5eqsstri 3976 . . 3 𝐶𝐴
7 eqid 2822 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfrec.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 41792 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2828 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfrec.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2822 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 43306 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3980 . . 3 (𝜑𝐴 𝑆)
156, 14sstrid 3953 . 2 (𝜑𝐶 𝑆)
16 1red 10631 . . 3 ((𝜑𝑥𝐶) → 1 ∈ ℝ)
176sseli 3938 . . . . 5 (𝑥𝐶𝑥𝐴)
1817adantl 485 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐴)
1918, 8syldan 594 . . 3 ((𝜑𝑥𝐶) → 𝐵 ∈ ℝ)
204eleq2i 2905 . . . . . 6 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
2120biimpi 219 . . . . 5 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
22 rabidim2 41674 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ≠ 0} → 𝐵 ≠ 0)
2321, 22syl 17 . . . 4 (𝑥𝐶𝐵 ≠ 0)
2423adantl 485 . . 3 ((𝜑𝑥𝐶) → 𝐵 ≠ 0)
2516, 19, 24redivcld 11457 . 2 ((𝜑𝑥𝐶) → (1 / 𝐵) ∈ ℝ)
26 nfv 1915 . . . . . . 7 𝑥 𝑎 ∈ ℝ
271, 26nfan 1900 . . . . . 6 𝑥(𝜑𝑎 ∈ ℝ)
28 nfv 1915 . . . . . 6 𝑥0 < 𝑎
2927, 28nfan 1900 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎)
3019ad4ant14 751 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
3123adantl 485 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
32 simpl 486 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ)
33 simpr 488 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 0 < 𝑎)
3432, 33elrpd 12416 . . . . . 6 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3534adantll 713 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3629, 30, 31, 35pimrecltpos 43283 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}))
37 smfrec.a . . . . . . . 8 (𝜑𝐴𝑉)
384, 37rabexd 5212 . . . . . . 7 (𝜑𝐶 ∈ V)
39 eqid 2822 . . . . . . 7 (𝑆t 𝐶) = (𝑆t 𝐶)
403, 38, 39subsalsal 42938 . . . . . 6 (𝜑 → (𝑆t 𝐶) ∈ SAlg)
4140ad2antrr 725 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑆t 𝐶) ∈ SAlg)
423adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4342adantr 484 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑆 ∈ SAlg)
446a1i 11 . . . . . . . . 9 (𝜑𝐶𝐴)
453, 11, 44sssmfmpt 43323 . . . . . . . 8 (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4645adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4746adantr 484 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4834rprecred 12430 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
4948adantll 713 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
5029, 43, 30, 47, 49smfpimgtmpt 43353 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∈ (𝑆t 𝐶))
51 0red 10633 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
521, 3, 19, 45, 51smfpimltmpt 43319 . . . . . 6 (𝜑 → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5352ad2antrr 725 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5441, 50, 53saluncld 42927 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}) ∈ (𝑆t 𝐶))
5536, 54eqeltrd 2914 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
56 nfv 1915 . . . . . . . 8 𝑥 𝑎 = 0
571, 56nfan 1900 . . . . . . 7 𝑥(𝜑𝑎 = 0)
58 breq2 5046 . . . . . . . . 9 (𝑎 = 0 → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
5958ad2antlr 726 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
6019, 24reclt0 41966 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
6160bicomd 226 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6261adantlr 714 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6359, 62bitrd 282 . . . . . . 7 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎𝐵 < 0))
6457, 63rabbida 3449 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 < 0})
6552adantr 484 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
6664, 65eqeltrd 2914 . . . . 5 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
6766ad4ant14 751 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
68 simpll 766 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → (𝜑𝑎 ∈ ℝ))
69 simpll 766 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ∈ ℝ)
70 0red 10633 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 0 ∈ ℝ)
71 neqne 3019 . . . . . . . 8 𝑎 = 0 → 𝑎 ≠ 0)
7271adantl 485 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ≠ 0)
73 simplr 768 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → ¬ 0 < 𝑎)
7469, 70, 72, 73lttri5d 41870 . . . . . 6 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
7574adantlll 717 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
76 nfv 1915 . . . . . . . 8 𝑥 𝑎 < 0
7727, 76nfan 1900 . . . . . . 7 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0)
788adantlr 714 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
7917, 78sylan2 595 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8079adantlr 714 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8123adantl 485 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
82 simpr 488 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
8382adantr 484 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
84 simpr 488 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 < 0)
8577, 80, 81, 83, 84pimrecltneg 43297 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)})
8642adantr 484 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑆 ∈ SAlg)
8738ad2antrr 725 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝐶 ∈ V)
8846adantr 484 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
89 1red 10631 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 1 ∈ ℝ)
90 simpl 486 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
91 lt0ne0 11095 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ≠ 0)
9289, 90, 91redivcld 11457 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9392adantll 713 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9493rexrd 10680 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ*)
9551ad2antrr 725 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ)
9695rexrd 10680 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ*)
9777, 86, 87, 80, 88, 94, 96smfpimioompt 43357 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)} ∈ (𝑆t 𝐶))
9885, 97eqeltrd 2914 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
9968, 75, 98syl2anc 587 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10067, 99pm2.61dan 812 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10155, 100pm2.61dan 812 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
1021, 2, 3, 15, 25, 101issmfdmpt 43321 1 (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2114   ≠ wne 3011  {crab 3134  Vcvv 3469   ∪ cun 3906   ⊆ wss 3908  ∪ cuni 4813   class class class wbr 5042   ↦ cmpt 5122  dom cdm 5532  ‘cfv 6334  (class class class)co 7140  ℝcr 10525  0cc0 10526  1c1 10527   < clt 10664   / cdiv 11286  ℝ+crp 12377  (,)cioo 12726   ↾t crest 16685  SAlgcsalg 42889  SMblFncsmblfn 43273 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fl 13157  df-rest 16687  df-salg 42890  df-smblfn 43274 This theorem is referenced by:  smfdiv  43368
 Copyright terms: Public domain W3C validator