Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfrec Structured version   Visualization version   GIF version

Theorem smfrec 46826
Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfrec.x 𝑥𝜑
smfrec.s (𝜑𝑆 ∈ SAlg)
smfrec.a (𝜑𝐴𝑉)
smfrec.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfrec.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfrec.e 𝐶 = {𝑥𝐴𝐵 ≠ 0}
Assertion
Ref Expression
smfrec (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfrec.x . 2 𝑥𝜑
2 nfv 1915 . 2 𝑎𝜑
3 smfrec.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfrec.e . . . 4 𝐶 = {𝑥𝐴𝐵 ≠ 0}
5 ssrab2 4030 . . . 4 {𝑥𝐴𝐵 ≠ 0} ⊆ 𝐴
64, 5eqsstri 3981 . . 3 𝐶𝐴
7 eqid 2731 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfrec.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 45260 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2737 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfrec.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2731 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 46770 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3969 . . 3 (𝜑𝐴 𝑆)
156, 14sstrid 3946 . 2 (𝜑𝐶 𝑆)
16 1red 11110 . . 3 ((𝜑𝑥𝐶) → 1 ∈ ℝ)
176sseli 3930 . . . . 5 (𝑥𝐶𝑥𝐴)
1817adantl 481 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐴)
1918, 8syldan 591 . . 3 ((𝜑𝑥𝐶) → 𝐵 ∈ ℝ)
204eleq2i 2823 . . . . . 6 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
2120biimpi 216 . . . . 5 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
22 rabidim2 45138 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ≠ 0} → 𝐵 ≠ 0)
2321, 22syl 17 . . . 4 (𝑥𝐶𝐵 ≠ 0)
2423adantl 481 . . 3 ((𝜑𝑥𝐶) → 𝐵 ≠ 0)
2516, 19, 24redivcld 11946 . 2 ((𝜑𝑥𝐶) → (1 / 𝐵) ∈ ℝ)
26 nfv 1915 . . . . . . 7 𝑥 𝑎 ∈ ℝ
271, 26nfan 1900 . . . . . 6 𝑥(𝜑𝑎 ∈ ℝ)
28 nfv 1915 . . . . . 6 𝑥0 < 𝑎
2927, 28nfan 1900 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎)
3019ad4ant14 752 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
3123adantl 481 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
32 simpl 482 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 0 < 𝑎)
3432, 33elrpd 12928 . . . . . 6 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3534adantll 714 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3629, 30, 31, 35pimrecltpos 46745 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}))
37 smfrec.a . . . . . . . 8 (𝜑𝐴𝑉)
384, 37rabexd 5278 . . . . . . 7 (𝜑𝐶 ∈ V)
39 eqid 2731 . . . . . . 7 (𝑆t 𝐶) = (𝑆t 𝐶)
403, 38, 39subsalsal 46396 . . . . . 6 (𝜑 → (𝑆t 𝐶) ∈ SAlg)
4140ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑆t 𝐶) ∈ SAlg)
423adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4342adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑆 ∈ SAlg)
446a1i 11 . . . . . . . . 9 (𝜑𝐶𝐴)
453, 11, 44sssmfmpt 46787 . . . . . . . 8 (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4645adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4746adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4834rprecred 12942 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
4948adantll 714 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
5029, 43, 30, 47, 49smfpimgtmpt 46818 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∈ (𝑆t 𝐶))
51 0red 11112 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
521, 3, 19, 45, 51smfpimltmpt 46783 . . . . . 6 (𝜑 → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5352ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5441, 50, 53saluncld 46385 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}) ∈ (𝑆t 𝐶))
5536, 54eqeltrd 2831 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
56 nfv 1915 . . . . . . . 8 𝑥 𝑎 = 0
571, 56nfan 1900 . . . . . . 7 𝑥(𝜑𝑎 = 0)
58 breq2 5095 . . . . . . . . 9 (𝑎 = 0 → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
5958ad2antlr 727 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
6019, 24reclt0 45428 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
6160bicomd 223 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6261adantlr 715 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6359, 62bitrd 279 . . . . . . 7 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎𝐵 < 0))
6457, 63rabbida 3421 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 < 0})
6552adantr 480 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
6664, 65eqeltrd 2831 . . . . 5 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
6766ad4ant14 752 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
68 simpll 766 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → (𝜑𝑎 ∈ ℝ))
69 simpll 766 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ∈ ℝ)
70 0red 11112 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 0 ∈ ℝ)
71 neqne 2936 . . . . . . . 8 𝑎 = 0 → 𝑎 ≠ 0)
7271adantl 481 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ≠ 0)
73 simplr 768 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → ¬ 0 < 𝑎)
7469, 70, 72, 73lttri5d 45339 . . . . . 6 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
7574adantlll 718 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
76 nfv 1915 . . . . . . . 8 𝑥 𝑎 < 0
7727, 76nfan 1900 . . . . . . 7 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0)
788adantlr 715 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
7917, 78sylan2 593 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8079adantlr 715 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8123adantl 481 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
82 simpr 484 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
8382adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
84 simpr 484 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 < 0)
8577, 80, 81, 83, 84pimrecltneg 46761 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)})
8642adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑆 ∈ SAlg)
8738ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝐶 ∈ V)
8846adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
89 1red 11110 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 1 ∈ ℝ)
90 simpl 482 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
91 lt0ne0 11580 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ≠ 0)
9289, 90, 91redivcld 11946 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9392adantll 714 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9493rexrd 11159 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ*)
9551ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ)
9695rexrd 11159 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ*)
9777, 86, 87, 80, 88, 94, 96smfpimioompt 46823 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)} ∈ (𝑆t 𝐶))
9885, 97eqeltrd 2831 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
9968, 75, 98syl2anc 584 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10067, 99pm2.61dan 812 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10155, 100pm2.61dan 812 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
1021, 2, 3, 15, 25, 101issmfdmpt 46785 1 (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cun 3900  wss 3902   cuni 4859   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   < clt 11143   / cdiv 11771  +crp 12887  (,)cioo 13242  t crest 17321  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-ioo 13246  df-ico 13248  df-fl 13693  df-rest 17323  df-salg 46346  df-smblfn 46733
This theorem is referenced by:  smfdiv  46834
  Copyright terms: Public domain W3C validator