Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfrec Structured version   Visualization version   GIF version

Theorem smfrec 45803
Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfrec.x 𝑥𝜑
smfrec.s (𝜑𝑆 ∈ SAlg)
smfrec.a (𝜑𝐴𝑉)
smfrec.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfrec.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfrec.e 𝐶 = {𝑥𝐴𝐵 ≠ 0}
Assertion
Ref Expression
smfrec (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfrec.x . 2 𝑥𝜑
2 nfv 1915 . 2 𝑎𝜑
3 smfrec.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfrec.e . . . 4 𝐶 = {𝑥𝐴𝐵 ≠ 0}
5 ssrab2 4076 . . . 4 {𝑥𝐴𝐵 ≠ 0} ⊆ 𝐴
64, 5eqsstri 4015 . . 3 𝐶𝐴
7 eqid 2730 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfrec.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 44221 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2736 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfrec.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2730 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 45747 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 4019 . . 3 (𝜑𝐴 𝑆)
156, 14sstrid 3992 . 2 (𝜑𝐶 𝑆)
16 1red 11219 . . 3 ((𝜑𝑥𝐶) → 1 ∈ ℝ)
176sseli 3977 . . . . 5 (𝑥𝐶𝑥𝐴)
1817adantl 480 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐴)
1918, 8syldan 589 . . 3 ((𝜑𝑥𝐶) → 𝐵 ∈ ℝ)
204eleq2i 2823 . . . . . 6 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
2120biimpi 215 . . . . 5 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
22 rabidim2 44092 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ≠ 0} → 𝐵 ≠ 0)
2321, 22syl 17 . . . 4 (𝑥𝐶𝐵 ≠ 0)
2423adantl 480 . . 3 ((𝜑𝑥𝐶) → 𝐵 ≠ 0)
2516, 19, 24redivcld 12046 . 2 ((𝜑𝑥𝐶) → (1 / 𝐵) ∈ ℝ)
26 nfv 1915 . . . . . . 7 𝑥 𝑎 ∈ ℝ
271, 26nfan 1900 . . . . . 6 𝑥(𝜑𝑎 ∈ ℝ)
28 nfv 1915 . . . . . 6 𝑥0 < 𝑎
2927, 28nfan 1900 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎)
3019ad4ant14 748 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
3123adantl 480 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
32 simpl 481 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ)
33 simpr 483 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 0 < 𝑎)
3432, 33elrpd 13017 . . . . . 6 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3534adantll 710 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3629, 30, 31, 35pimrecltpos 45722 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}))
37 smfrec.a . . . . . . . 8 (𝜑𝐴𝑉)
384, 37rabexd 5332 . . . . . . 7 (𝜑𝐶 ∈ V)
39 eqid 2730 . . . . . . 7 (𝑆t 𝐶) = (𝑆t 𝐶)
403, 38, 39subsalsal 45373 . . . . . 6 (𝜑 → (𝑆t 𝐶) ∈ SAlg)
4140ad2antrr 722 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑆t 𝐶) ∈ SAlg)
423adantr 479 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4342adantr 479 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑆 ∈ SAlg)
446a1i 11 . . . . . . . . 9 (𝜑𝐶𝐴)
453, 11, 44sssmfmpt 45764 . . . . . . . 8 (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4645adantr 479 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4746adantr 479 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4834rprecred 13031 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
4948adantll 710 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
5029, 43, 30, 47, 49smfpimgtmpt 45795 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∈ (𝑆t 𝐶))
51 0red 11221 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
521, 3, 19, 45, 51smfpimltmpt 45760 . . . . . 6 (𝜑 → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5352ad2antrr 722 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5441, 50, 53saluncld 45362 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}) ∈ (𝑆t 𝐶))
5536, 54eqeltrd 2831 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
56 nfv 1915 . . . . . . . 8 𝑥 𝑎 = 0
571, 56nfan 1900 . . . . . . 7 𝑥(𝜑𝑎 = 0)
58 breq2 5151 . . . . . . . . 9 (𝑎 = 0 → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
5958ad2antlr 723 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
6019, 24reclt0 44399 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
6160bicomd 222 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6261adantlr 711 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6359, 62bitrd 278 . . . . . . 7 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎𝐵 < 0))
6457, 63rabbida 3456 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 < 0})
6552adantr 479 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
6664, 65eqeltrd 2831 . . . . 5 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
6766ad4ant14 748 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
68 simpll 763 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → (𝜑𝑎 ∈ ℝ))
69 simpll 763 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ∈ ℝ)
70 0red 11221 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 0 ∈ ℝ)
71 neqne 2946 . . . . . . . 8 𝑎 = 0 → 𝑎 ≠ 0)
7271adantl 480 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ≠ 0)
73 simplr 765 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → ¬ 0 < 𝑎)
7469, 70, 72, 73lttri5d 44307 . . . . . 6 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
7574adantlll 714 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
76 nfv 1915 . . . . . . . 8 𝑥 𝑎 < 0
7727, 76nfan 1900 . . . . . . 7 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0)
788adantlr 711 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
7917, 78sylan2 591 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8079adantlr 711 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8123adantl 480 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
82 simpr 483 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
8382adantr 479 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
84 simpr 483 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 < 0)
8577, 80, 81, 83, 84pimrecltneg 45738 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)})
8642adantr 479 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑆 ∈ SAlg)
8738ad2antrr 722 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝐶 ∈ V)
8846adantr 479 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
89 1red 11219 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 1 ∈ ℝ)
90 simpl 481 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
91 lt0ne0 11684 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ≠ 0)
9289, 90, 91redivcld 12046 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9392adantll 710 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9493rexrd 11268 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ*)
9551ad2antrr 722 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ)
9695rexrd 11268 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ*)
9777, 86, 87, 80, 88, 94, 96smfpimioompt 45800 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)} ∈ (𝑆t 𝐶))
9885, 97eqeltrd 2831 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
9968, 75, 98syl2anc 582 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10067, 99pm2.61dan 809 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10155, 100pm2.61dan 809 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
1021, 2, 3, 15, 25, 101issmfdmpt 45762 1 (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wnf 1783  wcel 2104  wne 2938  {crab 3430  Vcvv 3472  cun 3945  wss 3947   cuni 4907   class class class wbr 5147  cmpt 5230  dom cdm 5675  cfv 6542  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113   < clt 11252   / cdiv 11875  +crp 12978  (,)cioo 13328  t crest 17370  SAlgcsalg 45322  SMblFncsmblfn 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-card 9936  df-acn 9939  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-ioo 13332  df-ico 13334  df-fl 13761  df-rest 17372  df-salg 45323  df-smblfn 45710
This theorem is referenced by:  smfdiv  45811
  Copyright terms: Public domain W3C validator