Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfrec Structured version   Visualization version   GIF version

Theorem smfrec 46911
Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfrec.x 𝑥𝜑
smfrec.s (𝜑𝑆 ∈ SAlg)
smfrec.a (𝜑𝐴𝑉)
smfrec.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfrec.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfrec.e 𝐶 = {𝑥𝐴𝐵 ≠ 0}
Assertion
Ref Expression
smfrec (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfrec.x . 2 𝑥𝜑
2 nfv 1915 . 2 𝑎𝜑
3 smfrec.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfrec.e . . . 4 𝐶 = {𝑥𝐴𝐵 ≠ 0}
5 ssrab2 4029 . . . 4 {𝑥𝐴𝐵 ≠ 0} ⊆ 𝐴
64, 5eqsstri 3977 . . 3 𝐶𝐴
7 eqid 2733 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfrec.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 45345 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2739 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfrec.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2733 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 46855 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3965 . . 3 (𝜑𝐴 𝑆)
156, 14sstrid 3942 . 2 (𝜑𝐶 𝑆)
16 1red 11120 . . 3 ((𝜑𝑥𝐶) → 1 ∈ ℝ)
176sseli 3926 . . . . 5 (𝑥𝐶𝑥𝐴)
1817adantl 481 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐴)
1918, 8syldan 591 . . 3 ((𝜑𝑥𝐶) → 𝐵 ∈ ℝ)
204eleq2i 2825 . . . . . 6 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
2120biimpi 216 . . . . 5 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
22 rabidim2 45223 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ≠ 0} → 𝐵 ≠ 0)
2321, 22syl 17 . . . 4 (𝑥𝐶𝐵 ≠ 0)
2423adantl 481 . . 3 ((𝜑𝑥𝐶) → 𝐵 ≠ 0)
2516, 19, 24redivcld 11956 . 2 ((𝜑𝑥𝐶) → (1 / 𝐵) ∈ ℝ)
26 nfv 1915 . . . . . . 7 𝑥 𝑎 ∈ ℝ
271, 26nfan 1900 . . . . . 6 𝑥(𝜑𝑎 ∈ ℝ)
28 nfv 1915 . . . . . 6 𝑥0 < 𝑎
2927, 28nfan 1900 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎)
3019ad4ant14 752 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
3123adantl 481 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
32 simpl 482 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 0 < 𝑎)
3432, 33elrpd 12933 . . . . . 6 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3534adantll 714 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3629, 30, 31, 35pimrecltpos 46830 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}))
37 smfrec.a . . . . . . . 8 (𝜑𝐴𝑉)
384, 37rabexd 5280 . . . . . . 7 (𝜑𝐶 ∈ V)
39 eqid 2733 . . . . . . 7 (𝑆t 𝐶) = (𝑆t 𝐶)
403, 38, 39subsalsal 46481 . . . . . 6 (𝜑 → (𝑆t 𝐶) ∈ SAlg)
4140ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑆t 𝐶) ∈ SAlg)
423adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4342adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑆 ∈ SAlg)
446a1i 11 . . . . . . . . 9 (𝜑𝐶𝐴)
453, 11, 44sssmfmpt 46872 . . . . . . . 8 (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4645adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4746adantr 480 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4834rprecred 12947 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
4948adantll 714 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
5029, 43, 30, 47, 49smfpimgtmpt 46903 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∈ (𝑆t 𝐶))
51 0red 11122 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
521, 3, 19, 45, 51smfpimltmpt 46868 . . . . . 6 (𝜑 → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5352ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5441, 50, 53saluncld 46470 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}) ∈ (𝑆t 𝐶))
5536, 54eqeltrd 2833 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
56 nfv 1915 . . . . . . . 8 𝑥 𝑎 = 0
571, 56nfan 1900 . . . . . . 7 𝑥(𝜑𝑎 = 0)
58 breq2 5097 . . . . . . . . 9 (𝑎 = 0 → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
5958ad2antlr 727 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
6019, 24reclt0 45513 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
6160bicomd 223 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6261adantlr 715 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6359, 62bitrd 279 . . . . . . 7 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎𝐵 < 0))
6457, 63rabbida 3422 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 < 0})
6552adantr 480 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
6664, 65eqeltrd 2833 . . . . 5 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
6766ad4ant14 752 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
68 simpll 766 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → (𝜑𝑎 ∈ ℝ))
69 simpll 766 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ∈ ℝ)
70 0red 11122 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 0 ∈ ℝ)
71 neqne 2937 . . . . . . . 8 𝑎 = 0 → 𝑎 ≠ 0)
7271adantl 481 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ≠ 0)
73 simplr 768 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → ¬ 0 < 𝑎)
7469, 70, 72, 73lttri5d 45424 . . . . . 6 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
7574adantlll 718 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
76 nfv 1915 . . . . . . . 8 𝑥 𝑎 < 0
7727, 76nfan 1900 . . . . . . 7 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0)
788adantlr 715 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
7917, 78sylan2 593 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8079adantlr 715 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8123adantl 481 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
82 simpr 484 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
8382adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
84 simpr 484 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 < 0)
8577, 80, 81, 83, 84pimrecltneg 46846 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)})
8642adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑆 ∈ SAlg)
8738ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝐶 ∈ V)
8846adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
89 1red 11120 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 1 ∈ ℝ)
90 simpl 482 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
91 lt0ne0 11590 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ≠ 0)
9289, 90, 91redivcld 11956 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9392adantll 714 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9493rexrd 11169 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ*)
9551ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ)
9695rexrd 11169 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ*)
9777, 86, 87, 80, 88, 94, 96smfpimioompt 46908 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)} ∈ (𝑆t 𝐶))
9885, 97eqeltrd 2833 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
9968, 75, 98syl2anc 584 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10067, 99pm2.61dan 812 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10155, 100pm2.61dan 812 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
1021, 2, 3, 15, 25, 101issmfdmpt 46870 1 (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2113  wne 2929  {crab 3396  Vcvv 3437  cun 3896  wss 3898   cuni 4858   class class class wbr 5093  cmpt 5174  dom cdm 5619  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014   < clt 11153   / cdiv 11781  +crp 12892  (,)cioo 13247  t crest 17326  SAlgcsalg 46430  SMblFncsmblfn 46817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-acn 9842  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-ioo 13251  df-ico 13253  df-fl 13698  df-rest 17328  df-salg 46431  df-smblfn 46818
This theorem is referenced by:  smfdiv  46919
  Copyright terms: Public domain W3C validator