Step | Hyp | Ref
| Expression |
1 | | smfrec.x |
. 2
⊢
Ⅎ𝑥𝜑 |
2 | | nfv 1918 |
. 2
⊢
Ⅎ𝑎𝜑 |
3 | | smfrec.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
4 | | smfrec.e |
. . . 4
⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0} |
5 | | ssrab2 4009 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0} ⊆ 𝐴 |
6 | 4, 5 | eqsstri 3951 |
. . 3
⊢ 𝐶 ⊆ 𝐴 |
7 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
8 | | smfrec.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
9 | 1, 7, 8 | dmmptdf 42652 |
. . . . 5
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
10 | 9 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | | smfrec.m |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
12 | | eqid 2738 |
. . . . 5
⊢ dom
(𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
13 | 3, 11, 12 | smfdmss 44156 |
. . . 4
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ∪ 𝑆) |
14 | 10, 13 | eqsstrd 3955 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
15 | 6, 14 | sstrid 3928 |
. 2
⊢ (𝜑 → 𝐶 ⊆ ∪ 𝑆) |
16 | | 1red 10907 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 1 ∈ ℝ) |
17 | 6 | sseli 3913 |
. . . . 5
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
18 | 17 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
19 | 18, 8 | syldan 590 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ ℝ) |
20 | 4 | eleq2i 2830 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0}) |
21 | 20 | biimpi 215 |
. . . . 5
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0}) |
22 | | rabidim2 42541 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0} → 𝐵 ≠ 0) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ (𝑥 ∈ 𝐶 → 𝐵 ≠ 0) |
24 | 23 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ≠ 0) |
25 | 16, 19, 24 | redivcld 11733 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (1 / 𝐵) ∈ ℝ) |
26 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑎 ∈ ℝ |
27 | 1, 26 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
28 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥0 < 𝑎 |
29 | 27, 28 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) |
30 | 19 | ad4ant14 748 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ ℝ) |
31 | 23 | adantl 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥 ∈ 𝐶) → 𝐵 ≠ 0) |
32 | | simpl 482 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 0 <
𝑎) → 𝑎 ∈
ℝ) |
33 | | simpr 484 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 0 <
𝑎) → 0 < 𝑎) |
34 | 32, 33 | elrpd 12698 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ 0 <
𝑎) → 𝑎 ∈
ℝ+) |
35 | 34 | adantll 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+) |
36 | 29, 30, 31, 35 | pimrecltpos 44133 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} = ({𝑥 ∈ 𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥 ∈ 𝐶 ∣ 𝐵 < 0})) |
37 | | smfrec.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
38 | 4, 37 | rabexd 5252 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ V) |
39 | | eqid 2738 |
. . . . . . 7
⊢ (𝑆 ↾t 𝐶) = (𝑆 ↾t 𝐶) |
40 | 3, 38, 39 | subsalsal 43788 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾t 𝐶) ∈ SAlg) |
41 | 40 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑆 ↾t 𝐶) ∈ SAlg) |
42 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
43 | 42 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑆 ∈ SAlg) |
44 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
45 | 3, 11, 44 | sssmfmpt 44173 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
47 | 46 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
48 | 34 | rprecred 12712 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 0 <
𝑎) → (1 / 𝑎) ∈
ℝ) |
49 | 48 | adantll 710 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ) |
50 | 29, 43, 30, 47, 49 | smfpimgtmpt 44203 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥 ∈ 𝐶 ∣ (1 / 𝑎) < 𝐵} ∈ (𝑆 ↾t 𝐶)) |
51 | | 0red 10909 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
52 | 1, 3, 19, 45, 51 | smfpimltmpt 44169 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ 𝐵 < 0} ∈ (𝑆 ↾t 𝐶)) |
53 | 52 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥 ∈ 𝐶 ∣ 𝐵 < 0} ∈ (𝑆 ↾t 𝐶)) |
54 | 41, 50, 53 | saluncld 43777 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → ({𝑥 ∈ 𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥 ∈ 𝐶 ∣ 𝐵 < 0}) ∈ (𝑆 ↾t 𝐶)) |
55 | 36, 54 | eqeltrd 2839 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
56 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑎 = 0 |
57 | 1, 56 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 = 0) |
58 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑎 = 0 → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0)) |
59 | 58 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 = 0) ∧ 𝑥 ∈ 𝐶) → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0)) |
60 | 19, 24 | reclt0 42821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐵 < 0 ↔ (1 / 𝐵) < 0)) |
61 | 60 | bicomd 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0)) |
62 | 61 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 = 0) ∧ 𝑥 ∈ 𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0)) |
63 | 59, 62 | bitrd 278 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 = 0) ∧ 𝑥 ∈ 𝐶) → ((1 / 𝐵) < 𝑎 ↔ 𝐵 < 0)) |
64 | 57, 63 | rabbida 3398 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 0) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥 ∈ 𝐶 ∣ 𝐵 < 0}) |
65 | 52 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 0) → {𝑥 ∈ 𝐶 ∣ 𝐵 < 0} ∈ (𝑆 ↾t 𝐶)) |
66 | 64, 65 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = 0) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
67 | 66 | ad4ant14 748 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ 𝑎 = 0) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
68 | | simpll 763 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → (𝜑 ∧ 𝑎 ∈ ℝ)) |
69 | | simpll 763 |
. . . . . . 7
⊢ (((𝑎 ∈ ℝ ∧ ¬ 0
< 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ∈ ℝ) |
70 | | 0red 10909 |
. . . . . . 7
⊢ (((𝑎 ∈ ℝ ∧ ¬ 0
< 𝑎) ∧ ¬ 𝑎 = 0) → 0 ∈
ℝ) |
71 | | neqne 2950 |
. . . . . . . 8
⊢ (¬
𝑎 = 0 → 𝑎 ≠ 0) |
72 | 71 | adantl 481 |
. . . . . . 7
⊢ (((𝑎 ∈ ℝ ∧ ¬ 0
< 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ≠ 0) |
73 | | simplr 765 |
. . . . . . 7
⊢ (((𝑎 ∈ ℝ ∧ ¬ 0
< 𝑎) ∧ ¬ 𝑎 = 0) → ¬ 0 < 𝑎) |
74 | 69, 70, 72, 73 | lttri5d 42728 |
. . . . . 6
⊢ (((𝑎 ∈ ℝ ∧ ¬ 0
< 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0) |
75 | 74 | adantlll 714 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0) |
76 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑎 < 0 |
77 | 27, 76 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) |
78 | 8 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
79 | 17, 78 | sylan2 592 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ ℝ) |
80 | 79 | adantlr 711 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ ℝ) |
81 | 23 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥 ∈ 𝐶) → 𝐵 ≠ 0) |
82 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) |
83 | 82 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 ∈ ℝ) |
84 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 < 0) |
85 | 77, 80, 81, 83, 84 | pimrecltneg 44147 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥 ∈ 𝐶 ∣ 𝐵 ∈ ((1 / 𝑎)(,)0)}) |
86 | 42 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑆 ∈ SAlg) |
87 | 38 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝐶 ∈ V) |
88 | 46 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
89 | | 1red 10907 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 1 ∈
ℝ) |
90 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ∈
ℝ) |
91 | | lt0ne0 11371 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ≠ 0) |
92 | 89, 90, 91 | redivcld 11733 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → (1 / 𝑎) ∈
ℝ) |
93 | 92 | adantll 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ) |
94 | 93 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈
ℝ*) |
95 | 51 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈
ℝ) |
96 | 95 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈
ℝ*) |
97 | 77, 86, 87, 80, 88, 94, 96 | smfpimioompt 44207 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥 ∈ 𝐶 ∣ 𝐵 ∈ ((1 / 𝑎)(,)0)} ∈ (𝑆 ↾t 𝐶)) |
98 | 85, 97 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
99 | 68, 75, 98 | syl2anc 583 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
100 | 67, 99 | pm2.61dan 809 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
101 | 55, 100 | pm2.61dan 809 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆 ↾t 𝐶)) |
102 | 1, 2, 3, 15, 25, 101 | issmfdmpt 44171 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆)) |