Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinflem Structured version   Visualization version   GIF version

Theorem smfinflem 45048
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinflem.m (𝜑𝑀 ∈ ℤ)
smfinflem.z 𝑍 = (ℤ𝑀)
smfinflem.s (𝜑𝑆 ∈ SAlg)
smfinflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinflem.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinflem.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinflem
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
3 nfv 1917 . . . . 5 𝑛(𝜑𝑥𝐷)
4 smfinflem.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 smfinflem.z . . . . . . 7 𝑍 = (ℤ𝑀)
64, 5uzn0d 43650 . . . . . 6 (𝜑𝑍 ≠ ∅)
76adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
8 smfinflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
98adantr 481 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
10 smfinflem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1110ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
12 eqid 2736 . . . . . . . 8 dom (𝐹𝑛) = dom (𝐹𝑛)
139, 11, 12smff 44963 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1413adantlr 713 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
15 ssrab2 4037 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} ⊆ 𝑛𝑍 dom (𝐹𝑛)
16 smfinflem.d . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
1716eleq2i 2829 . . . . . . . . . . 11 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1817biimpi 215 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1915, 18sselid 3942 . . . . . . . . 9 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2019adantr 481 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
21 simpr 485 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍)
22 eliinid 43311 . . . . . . . 8 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 21, 22syl2anc 584 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2423adantll 712 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2514, 24ffvelcdmd 7036 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
26 rabidim2 43302 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2718, 26syl 17 . . . . . 6 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2827adantl 482 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
293, 7, 25, 28infnsuprnmpt 43468 . . . 4 ((𝜑𝑥𝐷) → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
3029mpteq2dva 5205 . . 3 (𝜑 → (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
312, 30eqtrd 2776 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
32 nfv 1917 . . 3 𝑥𝜑
33 fvex 6855 . . . . . . . 8 (𝐹𝑛) ∈ V
3433dmex 7848 . . . . . . 7 dom (𝐹𝑛) ∈ V
3534rgenw 3068 . . . . . 6 𝑛𝑍 dom (𝐹𝑛) ∈ V
3635a1i 11 . . . . 5 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
376, 36iinexd 43333 . . . 4 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
3816, 37rabexd 5290 . . 3 (𝜑𝐷 ∈ V)
3925renegcld 11582 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
40 fveq2 6842 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑚)‘𝑤) = ((𝐹𝑚)‘𝑥))
4140breq2d 5117 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4241ralbidv 3174 . . . . . . . . . 10 (𝑤 = 𝑥 → (∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4342rexbidv 3175 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
44 nfcv 2907 . . . . . . . . . . 11 𝑤 𝑛𝑍 dom (𝐹𝑛)
45 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑍
46 nfcv 2907 . . . . . . . . . . . . 13 𝑥(𝐹𝑚)
4746nfdm 5906 . . . . . . . . . . . 12 𝑥dom (𝐹𝑚)
4845, 47nfiin 4985 . . . . . . . . . . 11 𝑥 𝑚𝑍 dom (𝐹𝑚)
49 nfv 1917 . . . . . . . . . . 11 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
50 nfv 1917 . . . . . . . . . . 11 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
51 nfcv 2907 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑛)
52 nfcv 2907 . . . . . . . . . . . . . 14 𝑛(𝐹𝑚)
5352nfdm 5906 . . . . . . . . . . . . 13 𝑛dom (𝐹𝑚)
54 fveq2 6842 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
5554dmeqd 5861 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
5651, 53, 55cbviin 4997 . . . . . . . . . . . 12 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
5756a1i 11 . . . . . . . . . . 11 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
58 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
5958breq2d 5117 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
6059ralbidv 3174 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
61 nfv 1917 . . . . . . . . . . . . . . . 16 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
62 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑛𝑦
63 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑛
64 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑛𝑤
6552, 64nffv 6852 . . . . . . . . . . . . . . . . 17 𝑛((𝐹𝑚)‘𝑤)
6662, 63, 65nfbr 5152 . . . . . . . . . . . . . . . 16 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
6754fveq1d 6844 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
6867breq2d 5117 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
6961, 66, 68cbvralw 3289 . . . . . . . . . . . . . . 15 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
7069a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7160, 70bitrd 278 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7271rexbidv 3175 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
73 breq1 5108 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7473ralbidv 3174 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7574cbvrexvw 3226 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
7675a1i 11 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7772, 76bitrd 278 . . . . . . . . . . 11 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7844, 48, 49, 50, 57, 77cbvrabcsfw 3899 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
7916, 78eqtri 2764 . . . . . . . . 9 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
8043, 79elrab2 3648 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8180biimpi 215 . . . . . . 7 (𝑥𝐷 → (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8281simprd 496 . . . . . 6 (𝑥𝐷 → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
8382adantl 482 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
84 renegcl 11464 . . . . . . . 8 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
8584ad2antlr 725 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → -𝑧 ∈ ℝ)
86 fveq2 6842 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
8786fveq1d 6844 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑛)‘𝑥))
8887breq2d 5117 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑧 ≤ ((𝐹𝑚)‘𝑥) ↔ 𝑧 ≤ ((𝐹𝑛)‘𝑥)))
8988rspcva 3579 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9089ancoms 459 . . . . . . . . . 10 ((∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9190adantll 712 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
92 simpllr 774 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
9325ad4ant14 750 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
9492, 93lenegd 11734 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → (𝑧 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑧))
9591, 94mpbid 231 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑧)
9695ralrimiva 3143 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧)
97 brralrspcev 5165 . . . . . . 7 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9885, 96, 97syl2anc 584 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9998rexlimdva2 3154 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦))
10083, 99mpd 15 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
1013, 7, 39, 100suprclrnmpt 43469 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
10216a1i 11 . . . . . . 7 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
103 nfv 1917 . . . . . . . . . 10 𝑦(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
104 nfv 1917 . . . . . . . . . 10 𝑦𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
105 renegcl 11464 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1061053ad2ant2 1134 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -𝑦 ∈ ℝ)
107 nfv 1917 . . . . . . . . . . . . . . 15 𝑛𝜑
108 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑛𝑥
109 nfii1 4989 . . . . . . . . . . . . . . . 16 𝑛 𝑛𝑍 dom (𝐹𝑛)
110108, 109nfel 2921 . . . . . . . . . . . . . . 15 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
111107, 110nfan 1902 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
11262nfel1 2923 . . . . . . . . . . . . . 14 𝑛 𝑦 ∈ ℝ
113 nfra1 3267 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
114111, 112, 113nf3an 1904 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
115 simpl2 1192 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
116 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝜑)
117 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
11822adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
119133adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
120 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
121119, 120ffvelcdmd 7036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
122116, 117, 118, 121syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
1231223ad2antl1 1185 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
124 rspa 3231 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1251243ad2antl3 1187 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
126 leneg 11658 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ) → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑦))
127126biimp3a 1469 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
128115, 123, 125, 127syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
129128ex 413 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → (𝑛𝑍 → -((𝐹𝑛)‘𝑥) ≤ -𝑦))
130114, 129ralrimi 3240 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦)
131 brralrspcev 5165 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
132106, 130, 131syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1331323exp 1119 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑦 ∈ ℝ → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)))
134103, 104, 133rexlimd 3249 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
135843ad2ant2 1134 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ∈ ℝ)
136 nfv 1917 . . . . . . . . . . . . . 14 𝑛 𝑧 ∈ ℝ
137 nfra1 3267 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
138111, 136, 137nf3an 1904 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1391223ad2antl1 1185 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
140 simpl2 1192 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
141 rspa 3231 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1421413ad2antl3 1187 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
143 simp3 1138 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
144 renegcl 11464 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑛)‘𝑥) ∈ ℝ → -((𝐹𝑛)‘𝑥) ∈ ℝ)
145144adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
146 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
147 leneg 11658 . . . . . . . . . . . . . . . . . . 19 ((-((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
148145, 146, 147syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
1491483adant3 1132 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
150143, 149mpbid 231 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ --((𝐹𝑛)‘𝑥))
151 recn 11141 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛)‘𝑥) ∈ ℝ → ((𝐹𝑛)‘𝑥) ∈ ℂ)
152151negnegd 11503 . . . . . . . . . . . . . . . . 17 (((𝐹𝑛)‘𝑥) ∈ ℝ → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
1531523ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
154150, 153breqtrd 5131 . . . . . . . . . . . . . . 15 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
155139, 140, 142, 154syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
156155ex 413 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (𝑛𝑍 → -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
157138, 156ralrimi 3240 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥))
158 breq1 5108 . . . . . . . . . . . . . 14 (𝑦 = -𝑧 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
159158ralbidv 3174 . . . . . . . . . . . . 13 (𝑦 = -𝑧 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
160159rspcev 3581 . . . . . . . . . . . 12 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
161135, 157, 160syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1621613exp 1119 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑧 ∈ ℝ → (∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))))
163162rexlimdv 3150 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)))
164134, 163impbid 211 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
16532, 164rabbida 3433 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
166102, 165eqtrd 2776 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
16732, 166alrimi 2206 . . . . 5 (𝜑 → ∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
168 eqid 2736 . . . . . . 7 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
169168rgenw 3068 . . . . . 6 𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
170169a1i 11 . . . . 5 (𝜑 → ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
171 mpteq12f 5193 . . . . 5 ((∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ∧ ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
172167, 170, 171syl2anc 584 . . . 4 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
173 nfv 1917 . . . . 5 𝑧𝜑
174121renegcld 11582 . . . . 5 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
175 nfv 1917 . . . . . 6 𝑥(𝜑𝑛𝑍)
17634a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ V)
1771213expa 1118 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
17813feqmptd 6910 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)))
179178eqcomd 2742 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) = (𝐹𝑛))
180179, 11eqeltrd 2838 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
181175, 9, 176, 177, 180smfneg 45034 . . . . 5 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ -((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
182 eqid 2736 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧}
183 eqid 2736 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
184107, 32, 173, 4, 5, 8, 174, 181, 182, 183smfsupmpt 45046 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
185172, 184eqeltrd 2838 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18632, 8, 38, 101, 185smfneg 45034 . 2 (𝜑 → (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18731, 186eqeltrd 2838 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  c0 4282   ciin 4955   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  wf 6492  cfv 6496  supcsup 9376  infcinf 9377  cr 11050   < clt 11189  cle 11190  -cneg 11386  cz 12499  cuz 12763  SAlgcsalg 44539  SMblFncsmblfn 44926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-s4 14739  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rest 17304  df-topgen 17325  df-top 22243  df-bases 22296  df-salg 44540  df-salgen 44544  df-smblfn 44927
This theorem is referenced by:  smfinf  45049
  Copyright terms: Public domain W3C validator