Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinflem Structured version   Visualization version   GIF version

Theorem smfinflem 46813
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinflem.m (𝜑𝑀 ∈ ℤ)
smfinflem.z 𝑍 = (ℤ𝑀)
smfinflem.s (𝜑𝑆 ∈ SAlg)
smfinflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinflem.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinflem.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinflem
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
3 nfv 1914 . . . . 5 𝑛(𝜑𝑥𝐷)
4 smfinflem.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 smfinflem.z . . . . . . 7 𝑍 = (ℤ𝑀)
64, 5uzn0d 45419 . . . . . 6 (𝜑𝑍 ≠ ∅)
76adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
8 smfinflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
98adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
10 smfinflem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1110ffvelcdmda 7079 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
12 eqid 2736 . . . . . . . 8 dom (𝐹𝑛) = dom (𝐹𝑛)
139, 11, 12smff 46728 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1413adantlr 715 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
15 ssrab2 4060 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} ⊆ 𝑛𝑍 dom (𝐹𝑛)
16 smfinflem.d . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
1716eleq2i 2827 . . . . . . . . . . 11 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1817biimpi 216 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1915, 18sselid 3961 . . . . . . . . 9 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2019adantr 480 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
21 simpr 484 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍)
22 eliinid 45102 . . . . . . . 8 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 21, 22syl2anc 584 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2423adantll 714 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2514, 24ffvelcdmd 7080 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
26 rabidim2 45093 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2718, 26syl 17 . . . . . 6 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2827adantl 481 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
293, 7, 25, 28infnsuprnmpt 45241 . . . 4 ((𝜑𝑥𝐷) → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
3029mpteq2dva 5219 . . 3 (𝜑 → (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
312, 30eqtrd 2771 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
32 nfv 1914 . . 3 𝑥𝜑
33 fvex 6894 . . . . . . . 8 (𝐹𝑛) ∈ V
3433dmex 7910 . . . . . . 7 dom (𝐹𝑛) ∈ V
3534rgenw 3056 . . . . . 6 𝑛𝑍 dom (𝐹𝑛) ∈ V
3635a1i 11 . . . . 5 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
376, 36iinexd 45124 . . . 4 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
3816, 37rabexd 5315 . . 3 (𝜑𝐷 ∈ V)
3925renegcld 11669 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
40 fveq2 6881 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑚)‘𝑤) = ((𝐹𝑚)‘𝑥))
4140breq2d 5136 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4241ralbidv 3164 . . . . . . . . . 10 (𝑤 = 𝑥 → (∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4342rexbidv 3165 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
44 nfcv 2899 . . . . . . . . . . 11 𝑤 𝑛𝑍 dom (𝐹𝑛)
45 nfcv 2899 . . . . . . . . . . . 12 𝑥𝑍
46 nfcv 2899 . . . . . . . . . . . . 13 𝑥(𝐹𝑚)
4746nfdm 5936 . . . . . . . . . . . 12 𝑥dom (𝐹𝑚)
4845, 47nfiin 5005 . . . . . . . . . . 11 𝑥 𝑚𝑍 dom (𝐹𝑚)
49 nfv 1914 . . . . . . . . . . 11 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
50 nfv 1914 . . . . . . . . . . 11 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
51 nfcv 2899 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑛)
52 nfcv 2899 . . . . . . . . . . . . . 14 𝑛(𝐹𝑚)
5352nfdm 5936 . . . . . . . . . . . . 13 𝑛dom (𝐹𝑚)
54 fveq2 6881 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
5554dmeqd 5890 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
5651, 53, 55cbviin 5018 . . . . . . . . . . . 12 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
5756a1i 11 . . . . . . . . . . 11 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
58 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
5958breq2d 5136 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
6059ralbidv 3164 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
61 nfv 1914 . . . . . . . . . . . . . . . 16 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
62 nfcv 2899 . . . . . . . . . . . . . . . . 17 𝑛𝑦
63 nfcv 2899 . . . . . . . . . . . . . . . . 17 𝑛
64 nfcv 2899 . . . . . . . . . . . . . . . . . 18 𝑛𝑤
6552, 64nffv 6891 . . . . . . . . . . . . . . . . 17 𝑛((𝐹𝑚)‘𝑤)
6662, 63, 65nfbr 5171 . . . . . . . . . . . . . . . 16 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
6754fveq1d 6883 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
6867breq2d 5136 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
6961, 66, 68cbvralw 3290 . . . . . . . . . . . . . . 15 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
7069a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7160, 70bitrd 279 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7271rexbidv 3165 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
73 breq1 5127 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7473ralbidv 3164 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7574cbvrexvw 3225 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
7675a1i 11 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7772, 76bitrd 279 . . . . . . . . . . 11 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7844, 48, 49, 50, 57, 77cbvrabcsfw 3920 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
7916, 78eqtri 2759 . . . . . . . . 9 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
8043, 79elrab2 3679 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8180biimpi 216 . . . . . . 7 (𝑥𝐷 → (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8281simprd 495 . . . . . 6 (𝑥𝐷 → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
8382adantl 481 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
84 renegcl 11551 . . . . . . . 8 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
8584ad2antlr 727 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → -𝑧 ∈ ℝ)
86 fveq2 6881 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
8786fveq1d 6883 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑛)‘𝑥))
8887breq2d 5136 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑧 ≤ ((𝐹𝑚)‘𝑥) ↔ 𝑧 ≤ ((𝐹𝑛)‘𝑥)))
8988rspcva 3604 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9089ancoms 458 . . . . . . . . . 10 ((∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9190adantll 714 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
92 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
9325ad4ant14 752 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
9492, 93lenegd 11821 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → (𝑧 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑧))
9591, 94mpbid 232 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑧)
9695ralrimiva 3133 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧)
97 brralrspcev 5184 . . . . . . 7 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9885, 96, 97syl2anc 584 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9998rexlimdva2 3144 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦))
10083, 99mpd 15 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
1013, 7, 39, 100suprclrnmpt 45242 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
10216a1i 11 . . . . . . 7 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
103 nfv 1914 . . . . . . . . . 10 𝑦(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
104 nfv 1914 . . . . . . . . . 10 𝑦𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
105 renegcl 11551 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1061053ad2ant2 1134 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -𝑦 ∈ ℝ)
107 nfv 1914 . . . . . . . . . . . . . . 15 𝑛𝜑
108 nfcv 2899 . . . . . . . . . . . . . . . 16 𝑛𝑥
109 nfii1 5010 . . . . . . . . . . . . . . . 16 𝑛 𝑛𝑍 dom (𝐹𝑛)
110108, 109nfel 2914 . . . . . . . . . . . . . . 15 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
111107, 110nfan 1899 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
11262nfel1 2916 . . . . . . . . . . . . . 14 𝑛 𝑦 ∈ ℝ
113 nfra1 3270 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
114111, 112, 113nf3an 1901 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
115 simpl2 1193 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
116 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝜑)
117 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
11822adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
119133adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
120 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
121119, 120ffvelcdmd 7080 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
122116, 117, 118, 121syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
1231223ad2antl1 1186 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
124 rspa 3235 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1251243ad2antl3 1188 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
126 leneg 11745 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ) → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑦))
127126biimp3a 1471 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
128115, 123, 125, 127syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
129128ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → (𝑛𝑍 → -((𝐹𝑛)‘𝑥) ≤ -𝑦))
130114, 129ralrimi 3244 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦)
131 brralrspcev 5184 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
132106, 130, 131syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1331323exp 1119 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑦 ∈ ℝ → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)))
134103, 104, 133rexlimd 3253 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
135843ad2ant2 1134 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ∈ ℝ)
136 nfv 1914 . . . . . . . . . . . . . 14 𝑛 𝑧 ∈ ℝ
137 nfra1 3270 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
138111, 136, 137nf3an 1901 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1391223ad2antl1 1186 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
140 simpl2 1193 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
141 rspa 3235 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1421413ad2antl3 1188 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
143 simp3 1138 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
144 renegcl 11551 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑛)‘𝑥) ∈ ℝ → -((𝐹𝑛)‘𝑥) ∈ ℝ)
145144adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
146 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
147 leneg 11745 . . . . . . . . . . . . . . . . . . 19 ((-((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
148145, 146, 147syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
1491483adant3 1132 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
150143, 149mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ --((𝐹𝑛)‘𝑥))
151 recn 11224 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛)‘𝑥) ∈ ℝ → ((𝐹𝑛)‘𝑥) ∈ ℂ)
152151negnegd 11590 . . . . . . . . . . . . . . . . 17 (((𝐹𝑛)‘𝑥) ∈ ℝ → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
1531523ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
154150, 153breqtrd 5150 . . . . . . . . . . . . . . 15 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
155139, 140, 142, 154syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
156155ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (𝑛𝑍 → -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
157138, 156ralrimi 3244 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥))
158 breq1 5127 . . . . . . . . . . . . . 14 (𝑦 = -𝑧 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
159158ralbidv 3164 . . . . . . . . . . . . 13 (𝑦 = -𝑧 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
160159rspcev 3606 . . . . . . . . . . . 12 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
161135, 157, 160syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1621613exp 1119 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑧 ∈ ℝ → (∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))))
163162rexlimdv 3140 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)))
164134, 163impbid 212 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
16532, 164rabbida 3447 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
166102, 165eqtrd 2771 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
16732, 166alrimi 2214 . . . . 5 (𝜑 → ∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
168 eqid 2736 . . . . . . 7 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
169168rgenw 3056 . . . . . 6 𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
170169a1i 11 . . . . 5 (𝜑 → ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
171 mpteq12f 5210 . . . . 5 ((∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ∧ ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
172167, 170, 171syl2anc 584 . . . 4 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
173 nfv 1914 . . . . 5 𝑧𝜑
174121renegcld 11669 . . . . 5 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
175 nfv 1914 . . . . . 6 𝑥(𝜑𝑛𝑍)
17634a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ V)
1771213expa 1118 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
17813feqmptd 6952 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)))
179178eqcomd 2742 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) = (𝐹𝑛))
180179, 11eqeltrd 2835 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
181175, 9, 176, 177, 180smfneg 46799 . . . . 5 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ -((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
182 eqid 2736 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧}
183 eqid 2736 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
184107, 32, 173, 4, 5, 8, 174, 181, 182, 183smfsupmpt 46811 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
185172, 184eqeltrd 2835 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18632, 8, 38, 101, 185smfneg 46799 . 2 (𝜑 → (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18731, 186eqeltrd 2835 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  c0 4313   ciin 4973   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  wf 6532  cfv 6536  supcsup 9457  infcinf 9458  cr 11133   < clt 11274  cle 11275  -cneg 11472  cz 12593  cuz 12857  SAlgcsalg 46304  SMblFncsmblfn 46691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-s4 14874  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-rest 17441  df-topgen 17462  df-top 22837  df-bases 22889  df-salg 46305  df-salgen 46309  df-smblfn 46692
This theorem is referenced by:  smfinf  46814
  Copyright terms: Public domain W3C validator