Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinflem Structured version   Visualization version   GIF version

Theorem smfinflem 46929
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinflem.m (𝜑𝑀 ∈ ℤ)
smfinflem.z 𝑍 = (ℤ𝑀)
smfinflem.s (𝜑𝑆 ∈ SAlg)
smfinflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinflem.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinflem.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinflem
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
3 nfv 1915 . . . . 5 𝑛(𝜑𝑥𝐷)
4 smfinflem.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 smfinflem.z . . . . . . 7 𝑍 = (ℤ𝑀)
64, 5uzn0d 45537 . . . . . 6 (𝜑𝑍 ≠ ∅)
76adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
8 smfinflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
98adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
10 smfinflem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1110ffvelcdmda 7026 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
12 eqid 2733 . . . . . . . 8 dom (𝐹𝑛) = dom (𝐹𝑛)
139, 11, 12smff 46844 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1413adantlr 715 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
15 ssrab2 4031 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} ⊆ 𝑛𝑍 dom (𝐹𝑛)
16 smfinflem.d . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
1716eleq2i 2825 . . . . . . . . . . 11 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1817biimpi 216 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1915, 18sselid 3929 . . . . . . . . 9 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2019adantr 480 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
21 simpr 484 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍)
22 eliinid 45222 . . . . . . . 8 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 21, 22syl2anc 584 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2423adantll 714 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2514, 24ffvelcdmd 7027 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
26 rabidim2 45213 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2718, 26syl 17 . . . . . 6 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2827adantl 481 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
293, 7, 25, 28infnsuprnmpt 45361 . . . 4 ((𝜑𝑥𝐷) → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
3029mpteq2dva 5188 . . 3 (𝜑 → (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
312, 30eqtrd 2768 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
32 nfv 1915 . . 3 𝑥𝜑
33 fvex 6844 . . . . . . . 8 (𝐹𝑛) ∈ V
3433dmex 7848 . . . . . . 7 dom (𝐹𝑛) ∈ V
3534rgenw 3053 . . . . . 6 𝑛𝑍 dom (𝐹𝑛) ∈ V
3635a1i 11 . . . . 5 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
376, 36iinexd 45244 . . . 4 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
3816, 37rabexd 5282 . . 3 (𝜑𝐷 ∈ V)
3925renegcld 11554 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
40 fveq2 6831 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑚)‘𝑤) = ((𝐹𝑚)‘𝑥))
4140breq2d 5107 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4241ralbidv 3157 . . . . . . . . . 10 (𝑤 = 𝑥 → (∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4342rexbidv 3158 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
44 nfcv 2896 . . . . . . . . . . 11 𝑤 𝑛𝑍 dom (𝐹𝑛)
45 nfcv 2896 . . . . . . . . . . . 12 𝑥𝑍
46 nfcv 2896 . . . . . . . . . . . . 13 𝑥(𝐹𝑚)
4746nfdm 5898 . . . . . . . . . . . 12 𝑥dom (𝐹𝑚)
4845, 47nfiin 4976 . . . . . . . . . . 11 𝑥 𝑚𝑍 dom (𝐹𝑚)
49 nfv 1915 . . . . . . . . . . 11 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
50 nfv 1915 . . . . . . . . . . 11 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
51 nfcv 2896 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑛)
52 nfcv 2896 . . . . . . . . . . . . . 14 𝑛(𝐹𝑚)
5352nfdm 5898 . . . . . . . . . . . . 13 𝑛dom (𝐹𝑚)
54 fveq2 6831 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
5554dmeqd 5852 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
5651, 53, 55cbviin 4988 . . . . . . . . . . . 12 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
5756a1i 11 . . . . . . . . . . 11 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
58 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
5958breq2d 5107 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
6059ralbidv 3157 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
61 nfv 1915 . . . . . . . . . . . . . . . 16 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
62 nfcv 2896 . . . . . . . . . . . . . . . . 17 𝑛𝑦
63 nfcv 2896 . . . . . . . . . . . . . . . . 17 𝑛
64 nfcv 2896 . . . . . . . . . . . . . . . . . 18 𝑛𝑤
6552, 64nffv 6841 . . . . . . . . . . . . . . . . 17 𝑛((𝐹𝑚)‘𝑤)
6662, 63, 65nfbr 5142 . . . . . . . . . . . . . . . 16 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
6754fveq1d 6833 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
6867breq2d 5107 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
6961, 66, 68cbvralw 3276 . . . . . . . . . . . . . . 15 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
7069a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7160, 70bitrd 279 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7271rexbidv 3158 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
73 breq1 5098 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7473ralbidv 3157 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7574cbvrexvw 3213 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
7675a1i 11 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7772, 76bitrd 279 . . . . . . . . . . 11 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7844, 48, 49, 50, 57, 77cbvrabcsfw 3888 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
7916, 78eqtri 2756 . . . . . . . . 9 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
8043, 79elrab2 3647 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8180biimpi 216 . . . . . . 7 (𝑥𝐷 → (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8281simprd 495 . . . . . 6 (𝑥𝐷 → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
8382adantl 481 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
84 renegcl 11434 . . . . . . . 8 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
8584ad2antlr 727 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → -𝑧 ∈ ℝ)
86 fveq2 6831 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
8786fveq1d 6833 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑛)‘𝑥))
8887breq2d 5107 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑧 ≤ ((𝐹𝑚)‘𝑥) ↔ 𝑧 ≤ ((𝐹𝑛)‘𝑥)))
8988rspcva 3572 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9089ancoms 458 . . . . . . . . . 10 ((∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9190adantll 714 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
92 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
9325ad4ant14 752 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
9492, 93lenegd 11706 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → (𝑧 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑧))
9591, 94mpbid 232 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑧)
9695ralrimiva 3126 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧)
97 brralrspcev 5155 . . . . . . 7 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9885, 96, 97syl2anc 584 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9998rexlimdva2 3137 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦))
10083, 99mpd 15 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
1013, 7, 39, 100suprclrnmpt 45362 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
10216a1i 11 . . . . . . 7 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
103 nfv 1915 . . . . . . . . . 10 𝑦(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
104 nfv 1915 . . . . . . . . . 10 𝑦𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
105 renegcl 11434 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1061053ad2ant2 1134 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -𝑦 ∈ ℝ)
107 nfv 1915 . . . . . . . . . . . . . . 15 𝑛𝜑
108 nfcv 2896 . . . . . . . . . . . . . . . 16 𝑛𝑥
109 nfii1 4981 . . . . . . . . . . . . . . . 16 𝑛 𝑛𝑍 dom (𝐹𝑛)
110108, 109nfel 2911 . . . . . . . . . . . . . . 15 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
111107, 110nfan 1900 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
11262nfel1 2913 . . . . . . . . . . . . . 14 𝑛 𝑦 ∈ ℝ
113 nfra1 3258 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
114111, 112, 113nf3an 1902 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
115 simpl2 1193 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
116 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝜑)
117 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
11822adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
119133adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
120 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
121119, 120ffvelcdmd 7027 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
122116, 117, 118, 121syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
1231223ad2antl1 1186 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
124 rspa 3223 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1251243ad2antl3 1188 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
126 leneg 11630 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ) → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑦))
127126biimp3a 1471 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
128115, 123, 125, 127syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
129128ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → (𝑛𝑍 → -((𝐹𝑛)‘𝑥) ≤ -𝑦))
130114, 129ralrimi 3232 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦)
131 brralrspcev 5155 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
132106, 130, 131syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1331323exp 1119 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑦 ∈ ℝ → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)))
134103, 104, 133rexlimd 3241 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
135843ad2ant2 1134 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ∈ ℝ)
136 nfv 1915 . . . . . . . . . . . . . 14 𝑛 𝑧 ∈ ℝ
137 nfra1 3258 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
138111, 136, 137nf3an 1902 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1391223ad2antl1 1186 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
140 simpl2 1193 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
141 rspa 3223 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1421413ad2antl3 1188 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
143 simp3 1138 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
144 renegcl 11434 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑛)‘𝑥) ∈ ℝ → -((𝐹𝑛)‘𝑥) ∈ ℝ)
145144adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
146 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
147 leneg 11630 . . . . . . . . . . . . . . . . . . 19 ((-((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
148145, 146, 147syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
1491483adant3 1132 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
150143, 149mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ --((𝐹𝑛)‘𝑥))
151 recn 11106 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛)‘𝑥) ∈ ℝ → ((𝐹𝑛)‘𝑥) ∈ ℂ)
152151negnegd 11473 . . . . . . . . . . . . . . . . 17 (((𝐹𝑛)‘𝑥) ∈ ℝ → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
1531523ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
154150, 153breqtrd 5121 . . . . . . . . . . . . . . 15 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
155139, 140, 142, 154syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
156155ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (𝑛𝑍 → -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
157138, 156ralrimi 3232 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥))
158 breq1 5098 . . . . . . . . . . . . . 14 (𝑦 = -𝑧 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
159158ralbidv 3157 . . . . . . . . . . . . 13 (𝑦 = -𝑧 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
160159rspcev 3574 . . . . . . . . . . . 12 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
161135, 157, 160syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1621613exp 1119 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑧 ∈ ℝ → (∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))))
163162rexlimdv 3133 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)))
164134, 163impbid 212 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
16532, 164rabbida 3423 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
166102, 165eqtrd 2768 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
16732, 166alrimi 2218 . . . . 5 (𝜑 → ∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
168 eqid 2733 . . . . . . 7 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
169168rgenw 3053 . . . . . 6 𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
170169a1i 11 . . . . 5 (𝜑 → ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
171 mpteq12f 5180 . . . . 5 ((∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ∧ ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
172167, 170, 171syl2anc 584 . . . 4 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
173 nfv 1915 . . . . 5 𝑧𝜑
174121renegcld 11554 . . . . 5 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
175 nfv 1915 . . . . . 6 𝑥(𝜑𝑛𝑍)
17634a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ V)
1771213expa 1118 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
17813feqmptd 6899 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)))
179178eqcomd 2739 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) = (𝐹𝑛))
180179, 11eqeltrd 2833 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
181175, 9, 176, 177, 180smfneg 46915 . . . . 5 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ -((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
182 eqid 2733 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧}
183 eqid 2733 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
184107, 32, 173, 4, 5, 8, 174, 181, 182, 183smfsupmpt 46927 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
185172, 184eqeltrd 2833 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18632, 8, 38, 101, 185smfneg 46915 . 2 (𝜑 → (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18731, 186eqeltrd 2833 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  {crab 3397  Vcvv 3438  c0 4284   ciin 4944   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  wf 6485  cfv 6489  supcsup 9334  infcinf 9335  cr 11015   < clt 11156  cle 11157  -cneg 11355  cz 12478  cuz 12742  SAlgcsalg 46420  SMblFncsmblfn 46807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-s2 14765  df-s3 14766  df-s4 14767  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-rest 17336  df-topgen 17357  df-top 22819  df-bases 22871  df-salg 46421  df-salgen 46425  df-smblfn 46808
This theorem is referenced by:  smfinf  46930
  Copyright terms: Public domain W3C validator