| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtmpt | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfpimgtmpt.x | ⊢ Ⅎ𝑥𝜑 |
| smfpimgtmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimgtmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| smfpimgtmpt.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfpimgtmpt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| Ref | Expression |
|---|---|
| smfpimgtmpt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5191 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | smfpimgtmpt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfpimgtmpt.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 4 | eqid 2729 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | smfpimgtmpt.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 6 | 1, 2, 3, 4, 5 | smfpreimagtf 46749 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 7 | smfpimgtmpt.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | smfpimgtmpt.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 10 | 7, 8, 9 | dmmptdf 45202 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 11 | 1 | nfdm 5893 | . . . . . 6 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 12 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 13 | 11, 12 | rabeqf 3429 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 14 | 10, 13 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 15 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 16 | 15, 9 | fvmpt2d 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 17 | 16 | breq2d 5104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < 𝐵)) |
| 18 | 7, 17 | rabbida 3421 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) |
| 19 | eqidd 2730 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) | |
| 20 | 14, 18, 19 | 3eqtrrd 2769 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 21 | 10 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 22 | 21 | oveq2d 7365 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 23 | 20, 22 | eleq12d 2822 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 24 | 6, 23 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {crab 3394 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 < clt 11149 ↾t crest 17324 SAlgcsalg 46289 SMblFncsmblfn 46676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-ioo 13252 df-ico 13254 df-fl 13696 df-rest 17326 df-salg 46290 df-smblfn 46677 |
| This theorem is referenced by: smfrec 46770 |
| Copyright terms: Public domain | W3C validator |