Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtmpt Structured version   Visualization version   GIF version

Theorem smfpimgtmpt 44665
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimgtmpt.x 𝑥𝜑
smfpimgtmpt.s (𝜑𝑆 ∈ SAlg)
smfpimgtmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimgtmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimgtmpt.l (𝜑𝐿 ∈ ℝ)
Assertion
Ref Expression
smfpimgtmpt (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimgtmpt
StepHypRef Expression
1 nfmpt1 5200 . . 3 𝑥(𝑥𝐴𝐵)
2 smfpimgtmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
3 smfpimgtmpt.f . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4 eqid 2736 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
5 smfpimgtmpt.l . . 3 (𝜑𝐿 ∈ ℝ)
61, 2, 3, 4, 5smfpreimagtf 44652 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} ∈ (𝑆t dom (𝑥𝐴𝐵)))
7 smfpimgtmpt.x . . . . . 6 𝑥𝜑
8 eqid 2736 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimgtmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
107, 8, 9dmmptdf 43100 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
111nfdm 5892 . . . . . 6 𝑥dom (𝑥𝐴𝐵)
12 nfcv 2904 . . . . . 6 𝑥𝐴
1311, 12rabeqf 3434 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
1410, 13syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
158a1i 11 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
1615, 9fvmpt2d 6944 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716breq2d 5104 . . . . 5 ((𝜑𝑥𝐴) → (𝐿 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝐿 < 𝐵))
187, 17rabbida 3429 . . . 4 (𝜑 → {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < 𝐵})
19 eqidd 2737 . . . 4 (𝜑 → {𝑥𝐴𝐿 < 𝐵} = {𝑥𝐴𝐿 < 𝐵})
2014, 18, 193eqtrrd 2781 . . 3 (𝜑 → {𝑥𝐴𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
2110eqcomd 2742 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
2221oveq2d 7353 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
2320, 22eleq12d 2831 . 2 (𝜑 → ({𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} ∈ (𝑆t dom (𝑥𝐴𝐵))))
246, 23mpbird 256 1 (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wnf 1784  wcel 2105  {crab 3403   class class class wbr 5092  cmpt 5175  dom cdm 5620  cfv 6479  (class class class)co 7337  cr 10971   < clt 11110  t crest 17228  SAlgcsalg 44194  SMblFncsmblfn 44579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cc 10292  ax-ac2 10320  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-card 9796  df-acn 9799  df-ac 9973  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-q 12790  df-rp 12832  df-ioo 13184  df-ico 13186  df-fl 13613  df-rest 17230  df-salg 44195  df-smblfn 44580
This theorem is referenced by:  smfrec  44673
  Copyright terms: Public domain W3C validator