Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtmpt Structured version   Visualization version   GIF version

Theorem smfpimgtmpt 46231
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimgtmpt.x 𝑥𝜑
smfpimgtmpt.s (𝜑𝑆 ∈ SAlg)
smfpimgtmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimgtmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimgtmpt.l (𝜑𝐿 ∈ ℝ)
Assertion
Ref Expression
smfpimgtmpt (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimgtmpt
StepHypRef Expression
1 nfmpt1 5251 . . 3 𝑥(𝑥𝐴𝐵)
2 smfpimgtmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
3 smfpimgtmpt.f . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4 eqid 2725 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
5 smfpimgtmpt.l . . 3 (𝜑𝐿 ∈ ℝ)
61, 2, 3, 4, 5smfpreimagtf 46218 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} ∈ (𝑆t dom (𝑥𝐴𝐵)))
7 smfpimgtmpt.x . . . . . 6 𝑥𝜑
8 eqid 2725 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimgtmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
107, 8, 9dmmptdf 44660 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
111nfdm 5947 . . . . . 6 𝑥dom (𝑥𝐴𝐵)
12 nfcv 2892 . . . . . 6 𝑥𝐴
1311, 12rabeqf 3455 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
1410, 13syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
158a1i 11 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
1615, 9fvmpt2d 7012 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716breq2d 5155 . . . . 5 ((𝜑𝑥𝐴) → (𝐿 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝐿 < 𝐵))
187, 17rabbida 3446 . . . 4 (𝜑 → {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < 𝐵})
19 eqidd 2726 . . . 4 (𝜑 → {𝑥𝐴𝐿 < 𝐵} = {𝑥𝐴𝐿 < 𝐵})
2014, 18, 193eqtrrd 2770 . . 3 (𝜑 → {𝑥𝐴𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
2110eqcomd 2731 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
2221oveq2d 7431 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
2320, 22eleq12d 2819 . 2 (𝜑 → ({𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} ∈ (𝑆t dom (𝑥𝐴𝐵))))
246, 23mpbird 256 1 (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wnf 1777  wcel 2098  {crab 3419   class class class wbr 5143  cmpt 5226  dom cdm 5672  cfv 6542  (class class class)co 7415  cr 11135   < clt 11276  t crest 17399  SAlgcsalg 45758  SMblFncsmblfn 46145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cc 10456  ax-ac2 10484  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-card 9960  df-acn 9963  df-ac 10137  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-q 12961  df-rp 13005  df-ioo 13358  df-ico 13360  df-fl 13787  df-rest 17401  df-salg 45759  df-smblfn 46146
This theorem is referenced by:  smfrec  46239
  Copyright terms: Public domain W3C validator