| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltxrmptf | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimltxrmptf.x | ⊢ Ⅎ𝑥𝜑 |
| smfpimltxrmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| smfpimltxrmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimltxrmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| smfpimltxrmptf.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfpimltxrmptf.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimltxrmptf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5194 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | nfdm 5897 | . . . . 5 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 3 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑦((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 | |
| 5 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 1, 5 | nffv 6840 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
| 7 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
| 9 | 6, 7, 8 | nfbr 5142 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅 |
| 10 | fveq2 6830 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
| 11 | 10 | breq1d 5105 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅)) |
| 12 | 2, 3, 4, 9, 11 | cbvrabw 3431 | . . . 4 ⊢ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅} |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅}) |
| 14 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 15 | smfpimltxrmptf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 16 | smfpimltxrmptf.f | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 17 | eqid 2733 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 18 | smfpimltxrmptf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 19 | 14, 15, 16, 17, 18 | smfpimltxr 46872 | . . 3 ⊢ (𝜑 → {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 20 | 13, 19 | eqeltrd 2833 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 21 | smfpimltxrmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 22 | smfpimltxrmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 23 | eqid 2733 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 24 | smfpimltxrmptf.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 25 | 21, 22, 23, 24 | dmmptdf2 45357 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 26 | 2, 22 | rabeqf 3430 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
| 28 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 29 | 22 | fvmpt2f 6938 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 30 | 28, 24, 29 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 31 | 30 | breq1d 5105 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ 𝐵 < 𝑅)) |
| 32 | 21, 31 | rabbida 3422 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) |
| 33 | eqidd 2734 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) | |
| 34 | 27, 32, 33 | 3eqtrrd 2773 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
| 35 | 25 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 36 | 35 | oveq2d 7370 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 37 | 34, 36 | eleq12d 2827 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 38 | 20, 37 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 {crab 3396 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5621 ‘cfv 6488 (class class class)co 7354 ℝ*cxr 11154 < clt 11155 ↾t crest 17328 SAlgcsalg 46433 SMblFncsmblfn 46820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cc 10335 ax-ac2 10363 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-acn 9844 df-ac 10016 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-ioo 13253 df-ico 13255 df-rest 17330 df-salg 46434 df-smblfn 46821 |
| This theorem is referenced by: smfpimltxrmpt 46884 smfdmmblpimne 46962 |
| Copyright terms: Public domain | W3C validator |