Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltxrmptf | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
Ref | Expression |
---|---|
smfpimltxrmptf.x | ⊢ Ⅎ𝑥𝜑 |
smfpimltxrmptf.1 | ⊢ Ⅎ𝑥𝐴 |
smfpimltxrmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimltxrmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
smfpimltxrmptf.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimltxrmptf.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimltxrmptf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5183 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | nfdm 5863 | . . . . 5 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑦((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 | |
5 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
6 | 1, 5 | nffv 6793 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
7 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥 < | |
8 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
9 | 6, 7, 8 | nfbr 5122 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅 |
10 | fveq2 6783 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
11 | 10 | breq1d 5085 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅)) |
12 | 2, 3, 4, 9, 11 | cbvrabw 3425 | . . . 4 ⊢ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅} |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅}) |
14 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐵) | |
15 | smfpimltxrmptf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
16 | smfpimltxrmptf.f | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
17 | eqid 2739 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
18 | smfpimltxrmptf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
19 | 14, 15, 16, 17, 18 | smfpimltxr 44292 | . . 3 ⊢ (𝜑 → {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
20 | 13, 19 | eqeltrd 2840 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
21 | smfpimltxrmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
22 | smfpimltxrmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
23 | eqid 2739 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
24 | smfpimltxrmptf.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
25 | 21, 22, 23, 24 | dmmptdf2 42783 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
26 | 2, 22 | rabeqf 3416 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
28 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
29 | 22 | fvmpt2f 6885 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
30 | 28, 24, 29 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
31 | 30 | breq1d 5085 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ 𝐵 < 𝑅)) |
32 | 21, 31 | rabbida 3410 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) |
33 | eqidd 2740 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) | |
34 | 27, 32, 33 | 3eqtrrd 2784 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
35 | 25 | eqcomd 2745 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
36 | 35 | oveq2d 7300 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
37 | 34, 36 | eleq12d 2834 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
38 | 20, 37 | mpbird 256 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2888 {crab 3069 class class class wbr 5075 ↦ cmpt 5158 dom cdm 5590 ‘cfv 6437 (class class class)co 7284 ℝ*cxr 11017 < clt 11018 ↾t crest 17140 SAlgcsalg 43856 SMblFncsmblfn 44240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cc 10200 ax-ac2 10228 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-pm 8627 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-card 9706 df-acn 9709 df-ac 9881 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-ioo 13092 df-ico 13094 df-rest 17142 df-salg 43857 df-smblfn 44241 |
This theorem is referenced by: smfpimltxrmpt 44304 |
Copyright terms: Public domain | W3C validator |