![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltxrmptf | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
Ref | Expression |
---|---|
smfpimltxrmptf.x | ⊢ Ⅎ𝑥𝜑 |
smfpimltxrmptf.1 | ⊢ Ⅎ𝑥𝐴 |
smfpimltxrmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimltxrmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
smfpimltxrmptf.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimltxrmptf.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimltxrmptf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5250 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | nfdm 5947 | . . . . 5 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑦dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑦((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 | |
5 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
6 | 1, 5 | nffv 6901 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
7 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥 < | |
8 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
9 | 6, 7, 8 | nfbr 5189 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅 |
10 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
11 | 10 | breq1d 5152 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅)) |
12 | 2, 3, 4, 9, 11 | cbvrabw 3462 | . . . 4 ⊢ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅} |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅}) |
14 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐵) | |
15 | smfpimltxrmptf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
16 | smfpimltxrmptf.f | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
17 | eqid 2727 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
18 | smfpimltxrmptf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
19 | 14, 15, 16, 17, 18 | smfpimltxr 46058 | . . 3 ⊢ (𝜑 → {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
20 | 13, 19 | eqeltrd 2828 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
21 | smfpimltxrmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
22 | smfpimltxrmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
23 | eqid 2727 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
24 | smfpimltxrmptf.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
25 | 21, 22, 23, 24 | dmmptdf2 44530 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
26 | 2, 22 | rabeqf 3461 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
28 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
29 | 22 | fvmpt2f 7000 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
30 | 28, 24, 29 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
31 | 30 | breq1d 5152 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ 𝐵 < 𝑅)) |
32 | 21, 31 | rabbida 3453 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) |
33 | eqidd 2728 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) | |
34 | 27, 32, 33 | 3eqtrrd 2772 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
35 | 25 | eqcomd 2733 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
36 | 35 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
37 | 34, 36 | eleq12d 2822 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
38 | 20, 37 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2878 {crab 3427 class class class wbr 5142 ↦ cmpt 5225 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 ℝ*cxr 11269 < clt 11270 ↾t crest 17393 SAlgcsalg 45619 SMblFncsmblfn 46006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cc 10450 ax-ac2 10478 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-acn 9957 df-ac 10131 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-ioo 13352 df-ico 13354 df-rest 17395 df-salg 45620 df-smblfn 46007 |
This theorem is referenced by: smfpimltxrmpt 46070 smfdmmblpimne 46148 |
Copyright terms: Public domain | W3C validator |