Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxrmptf Structured version   Visualization version   GIF version

Theorem smfpimltxrmptf 45085
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
smfpimltxrmptf.x 𝑥𝜑
smfpimltxrmptf.1 𝑥𝐴
smfpimltxrmptf.s (𝜑𝑆 ∈ SAlg)
smfpimltxrmptf.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimltxrmptf.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimltxrmptf.r (𝜑𝑅 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxrmptf (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimltxrmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5214 . . . . . 6 𝑥(𝑥𝐴𝐵)
21nfdm 5907 . . . . 5 𝑥dom (𝑥𝐴𝐵)
3 nfcv 2904 . . . . 5 𝑦dom (𝑥𝐴𝐵)
4 nfv 1918 . . . . 5 𝑦((𝑥𝐴𝐵)‘𝑥) < 𝑅
5 nfcv 2904 . . . . . . 7 𝑥𝑦
61, 5nffv 6853 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
7 nfcv 2904 . . . . . 6 𝑥 <
8 nfcv 2904 . . . . . 6 𝑥𝑅
96, 7, 8nfbr 5153 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦) < 𝑅
10 fveq2 6843 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑦))
1110breq1d 5116 . . . . 5 (𝑥 = 𝑦 → (((𝑥𝐴𝐵)‘𝑥) < 𝑅 ↔ ((𝑥𝐴𝐵)‘𝑦) < 𝑅))
122, 3, 4, 9, 11cbvrabw 3438 . . . 4 {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑦) < 𝑅}
1312a1i 11 . . 3 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑦) < 𝑅})
14 nfcv 2904 . . . 4 𝑦(𝑥𝐴𝐵)
15 smfpimltxrmptf.s . . . 4 (𝜑𝑆 ∈ SAlg)
16 smfpimltxrmptf.f . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
17 eqid 2733 . . . 4 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
18 smfpimltxrmptf.r . . . 4 (𝜑𝑅 ∈ ℝ*)
1914, 15, 16, 17, 18smfpimltxr 45074 . . 3 (𝜑 → {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑦) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
2013, 19eqeltrd 2834 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
21 smfpimltxrmptf.x . . . . . 6 𝑥𝜑
22 smfpimltxrmptf.1 . . . . . 6 𝑥𝐴
23 eqid 2733 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
24 smfpimltxrmptf.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
2521, 22, 23, 24dmmptdf2 43545 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
262, 22rabeqf 3437 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
2725, 26syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
28 simpr 486 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
2922fvmpt2f 6950 . . . . . . 7 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3028, 24, 29syl2anc 585 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3130breq1d 5116 . . . . 5 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑅𝐵 < 𝑅))
3221, 31rabbida 3432 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
33 eqidd 2734 . . . 4 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
3427, 32, 333eqtrrd 2778 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
3525eqcomd 2739 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
3635oveq2d 7374 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
3734, 36eleq12d 2828 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵))))
3820, 37mpbird 257 1 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  {crab 3406   class class class wbr 5106  cmpt 5189  dom cdm 5634  cfv 6497  (class class class)co 7358  *cxr 11193   < clt 11194  t crest 17307  SAlgcsalg 44635  SMblFncsmblfn 45022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cc 10376  ax-ac2 10404  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-card 9880  df-acn 9883  df-ac 10057  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-ioo 13274  df-ico 13276  df-rest 17309  df-salg 44636  df-smblfn 45023
This theorem is referenced by:  smfpimltxrmpt  45086  smfdmmblpimne  45164
  Copyright terms: Public domain W3C validator