| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltmpt | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfpimltmpt.x | ⊢ Ⅎ𝑥𝜑 |
| smfpimltmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimltmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| smfpimltmpt.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfpimltmpt.r | ⊢ (𝜑 → 𝑅 ∈ ℝ) |
| Ref | Expression |
|---|---|
| smfpimltmpt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5190 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | smfpimltmpt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfpimltmpt.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 4 | eqid 2731 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | smfpimltmpt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ) | |
| 6 | 1, 2, 3, 4, 5 | smfpreimaltf 46773 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 7 | smfpimltmpt.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | smfpimltmpt.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 10 | 7, 8, 9 | dmmptdf 45260 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 11 | 1 | nfdm 5891 | . . . . . 6 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 12 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 13 | 11, 12 | rabeqf 3429 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
| 14 | 10, 13 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
| 15 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 16 | 15, 9 | fvmpt2d 6942 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 17 | 16 | breq1d 5101 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅 ↔ 𝐵 < 𝑅)) |
| 18 | 7, 17 | rabbida 3421 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) |
| 19 | eqidd 2732 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅}) | |
| 20 | 14, 18, 19 | 3eqtrrd 2771 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅}) |
| 21 | 10 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 22 | 21 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 23 | 20, 22 | eleq12d 2825 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑅} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 24 | 6, 23 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 {crab 3395 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 < clt 11143 ↾t crest 17321 SAlgcsalg 46345 SMblFncsmblfn 46732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ioo 13246 df-ico 13248 df-smblfn 46733 |
| This theorem is referenced by: smfaddlem2 46801 smfrec 46826 |
| Copyright terms: Public domain | W3C validator |