Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltmpt Structured version   Visualization version   GIF version

Theorem smfpimltmpt 43017
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltmpt.x 𝑥𝜑
smfpimltmpt.s (𝜑𝑆 ∈ SAlg)
smfpimltmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimltmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimltmpt.r (𝜑𝑅 ∈ ℝ)
Assertion
Ref Expression
smfpimltmpt (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimltmpt
StepHypRef Expression
1 nfmpt1 5156 . . 3 𝑥(𝑥𝐴𝐵)
2 smfpimltmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
3 smfpimltmpt.f . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4 eqid 2821 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
5 smfpimltmpt.r . . 3 (𝜑𝑅 ∈ ℝ)
61, 2, 3, 4, 5smfpreimaltf 43007 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
7 smfpimltmpt.x . . . . . 6 𝑥𝜑
8 eqid 2821 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimltmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
107, 8, 9dmmptdf 41481 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
111nfdm 5817 . . . . . 6 𝑥dom (𝑥𝐴𝐵)
12 nfcv 2977 . . . . . 6 𝑥𝐴
1311, 12rabeqf 3481 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
1410, 13syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
158a1i 11 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
1615, 9fvmpt2d 6775 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716breq1d 5068 . . . . 5 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑅𝐵 < 𝑅))
187, 17rabbida 3474 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
19 eqidd 2822 . . . 4 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
2014, 18, 193eqtrrd 2861 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
2110eqcomd 2827 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
2221oveq2d 7166 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
2320, 22eleq12d 2907 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵))))
246, 23mpbird 259 1 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  {crab 3142   class class class wbr 5058  cmpt 5138  dom cdm 5549  cfv 6349  (class class class)co 7150  cr 10530   < clt 10669  t crest 16688  SAlgcsalg 42587  SMblFncsmblfn 42971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-ioo 12736  df-ico 12738  df-smblfn 42972
This theorem is referenced by:  smfaddlem2  43034  smfrec  43058
  Copyright terms: Public domain W3C validator