Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltmpt Structured version   Visualization version   GIF version

Theorem smfpimltmpt 46047
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltmpt.x 𝑥𝜑
smfpimltmpt.s (𝜑𝑆 ∈ SAlg)
smfpimltmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimltmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimltmpt.r (𝜑𝑅 ∈ ℝ)
Assertion
Ref Expression
smfpimltmpt (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimltmpt
StepHypRef Expression
1 nfmpt1 5250 . . 3 𝑥(𝑥𝐴𝐵)
2 smfpimltmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
3 smfpimltmpt.f . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4 eqid 2727 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
5 smfpimltmpt.r . . 3 (𝜑𝑅 ∈ ℝ)
61, 2, 3, 4, 5smfpreimaltf 46037 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
7 smfpimltmpt.x . . . . . 6 𝑥𝜑
8 eqid 2727 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimltmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
107, 8, 9dmmptdf 44510 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
111nfdm 5947 . . . . . 6 𝑥dom (𝑥𝐴𝐵)
12 nfcv 2898 . . . . . 6 𝑥𝐴
1311, 12rabeqf 3461 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
1410, 13syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
158a1i 11 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
1615, 9fvmpt2d 7012 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716breq1d 5152 . . . . 5 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑅𝐵 < 𝑅))
187, 17rabbida 3453 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
19 eqidd 2728 . . . 4 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
2014, 18, 193eqtrrd 2772 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
2110eqcomd 2733 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
2221oveq2d 7430 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
2320, 22eleq12d 2822 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵))))
246, 23mpbird 257 1 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wnf 1778  wcel 2099  {crab 3427   class class class wbr 5142  cmpt 5225  dom cdm 5672  cfv 6542  (class class class)co 7414  cr 11123   < clt 11264  t crest 17387  SAlgcsalg 45609  SMblFncsmblfn 45996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-pre-lttri 11198  ax-pre-lttrn 11199
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-er 8716  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-ioo 13346  df-ico 13348  df-smblfn 45997
This theorem is referenced by:  smfaddlem2  46065  smfrec  46090
  Copyright terms: Public domain W3C validator